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Abstract

We propose a PDE-controllability based approach to the enhancement
of diffusive mixing for passive scalar fields. Unlike in the existing literature,
our relaxation enhancing fields are not prescribed ab initio at every time and
at every point of the spatial domain. Instead, we prove that time-dependent
relaxation enhancing vector fields can be obtained as state trajectories of
control systems described by the incompressible Euler equations either driven
by finite-dimensional controls or by controls localized in space. The main
ingredient of our proof is a new approximate controllability theorem for the
incompressible Euler equations on T2, ensuring the approximate tracking
of the full state all over the considered time interval. Combining this with
a continuous dependence result yields enhanced relaxation for the passive
scalar field. Another essential tool in our analysis is the exact controllability
of the incompressible Euler system driven by spatially localized forces.
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1 Introduction

The objective of this work is to obtain relaxation enhancing fields as state
trajectories of a system describing a controlled incompressible flow. Relaxation
enhancing flows, both stationary and time-periodic, have been fully characterized
by Constantin et al. and Kiselev et al. in [7,26], using spectral conditions. However,
these flows generally fail to satisfy fluid equations such as the incompressible
Euler or Navier–Stokes systems. Here, we offer an extended notion of relaxation
enhancing flows that solve actual fluid PDEs driven by forces (controls) localized
either in frequency or in the physical space. To describe the general context of our
results, we consider, as in [7,26], the passive scalar equation of diffusion–advection
type

𝜕𝜙𝑎

𝜕𝑡
(𝑡, 𝑥) + 𝑎�̃�(𝑥) · ∇𝜙𝑎 (𝑡, 𝑥) − Δ𝜙𝑎 (𝑡, 𝑥) = 0 (𝑡 ⩾ 0, 𝑥 ∈ 𝑀), (1.1)

𝜙𝑎 (0, 𝑥) = 𝑓 (𝑥) (𝑥 ∈ 𝑀), (1.2)

where 𝑀 is a smooth compact 𝑑-dimensional Riemannian manifold without
boundary, Δ is the Laplace–Beltrami operator on 𝑀 , 𝑎 is a positive constant, and �̃�
is a time-independent sufficiently regular divergence-free vector field.

Under the above assumptions, the average 𝜙𝑎 of 𝜙𝑎 on 𝑀 is constant with
respect to time, and the 𝐿2(𝑀) norm of 𝜙𝑎 (𝑡, ·) − 𝜙𝑎 decays exponentially when
𝑡 → ∞. More precisely, we have the decay estimate

∥𝜙𝑎 (𝑡, ·) − 𝜙𝑎∥𝐿2 (𝑀 ) ⩽ exp(−𝜆𝑡)∥ 𝑓 − 𝑓 ∥𝐿2 (𝑀 ) (𝑎 ⩾ 0, 𝑡 ⩾ 0), (1.3)
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where 𝜆 is the smallest positive eigenvalue of the operator −Δ. For 𝑎 = 0 the decay
estimate (1.3) is clearly sharp. Roughly speaking, the divergence-free vector field
�̃� is said to be relaxation enhancing if the decay of the 𝐿2 norm of 𝜙𝑎 becomes
arbitrarily large when 𝑎 → ∞. We borrow from [7] the following definition of this
concept (see also the review by Coti Zelati et al. [11] and the references therein for
further information):

Definition 1.1. A divergence-free vector field �̃� on 𝑀 is called relaxation enhancing
if for every 𝜏, 𝛿 > 0 there exists 𝑎∗(𝜏, 𝛿) > 0 such that for any 𝑎 ⩾ 𝑎∗(𝜏, 𝛿) and
every 𝑓 ∈ 𝐿2(𝑀), with ∥ 𝑓 ∥𝐿2 (𝑀 ) ⩽ 1 and

∫
𝑀
𝑓 (𝑥) d𝑥 = 0, the solution 𝜙𝑎 of

(1.1) and (1.2) satisfies
∥𝜙𝑎 (𝜏, ·)∥𝐿2 (𝑀 ) < 𝛿.

Let us mention that the above defined notion is strongly related to the concept
of mixing vector fields (for instance, see [12]).

The main result of Constantin et al. [7] gives a necessary and sufficient condition
for a Lipschitz field �̃� to be relaxation enhancing. The Lipschitz property assumption
has been weakened to continuity by Wei [35], yielding the following result:

Theorem 1.2. A continuous divergence-free field �̃� on 𝑀 is relaxation enhancing
if and only if the operator 𝜑 ↦→ �̃� · ∇𝜑 has no eigenvectors in the Sobolev space
𝐻1(𝑀), other than constant functions.

The main novelty brought in by the present work is that, instead of directly
imposing a relaxation enhancing field �̃� in (1.1), we obtain a (time-dependent)
relaxation enhancing field as state trajectory of a system describing a controlled
fluid flow on 𝑀. This means, in particular, that enhanced relaxation is achieved
either by acting on a finite number of scalar control functions or by a control force
localized in an open strict subset of 𝑀. More precisely, we consider the case in
which 𝑀 is the two dimensional flat torus T2 = R2/2𝜋Z2 and the control system is
described by the incompressible Euler equations on T2, i.e.,

𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣 + ∇𝑝 = ℎ + 𝐵𝑢 in (0,∞) × T2, (1.4)

div 𝑣 = 0 in (0,∞) × T2, (1.5)
𝑣(0, ·) = 𝑣0 on T2, (1.6)

where 𝑣0 is a divergence-free vector field and ℎ is a given function (both smooth
enough in a sense made precise later). Here, 𝐵 ∈ L(𝑈, 𝐿2(T2;R2)) is the con-
trol operator, 𝑈 is a Hilbert space, and 𝑢 ∈ 𝐿2

𝑙𝑜𝑐
((0,∞);𝑈) is the control function.

As far as we know, this approach has not yet been explored in the literature
in the context of enhanced dissipation. However, the idea of replacing an apriori
given divergence-free vector field �̃� in (1.1) by a velocity field obtained as a state
trajectory of a controlled incompressible flow already appeared in the related
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context of mixing problems; see Hu [22] or Hu et al. [23]. These works consider
optimal control problems in which the cost function involves a negative Sobolev
norm of the final state of an advection equation (with no diffusion term) and the
advection velocity field is obtained by controlling a fluid flow described by the
incompressible time-dependent Stokes or Navier–Stokes equations. Note that the
advection velocity fields obtained by minimizing the cost functions in [22] or [23]
have apriori no reason to be relaxation enhancing.

In addition, we would like to mention the work by Bedrossian et al. [5]. In
their work, instead of control theoretic methods, they considered a probabilistic
approach. More precisely, they obtained (in an almost sure sense) relaxation
enhancing divergence-free vector fields as solutions to the 2D Navier–Stokes
equations driven by a regular-in-space and non-degenerate white-in-time noise.
The particularity of our work is that we construct relaxation enhancing fields by
means of finite-dimensional or spatially localized deterministic controls acting on
the 2D Euler equations. Here, finite-dimensional controls means that the control
space is 𝑈 = R𝑚, with 𝑚 ∈ N (as small as possible) and that the control operator
𝐵 in (1.4) is given by

(𝐵u) (𝑥) =
𝑚∑︁
𝑗=1

uj𝜃 𝑗 (𝑥)
(
u = [u1, . . . , u𝑚]⊤ ∈ R𝑚, 𝑥 ∈ T2

)
, (1.7)

where {𝜃 𝑗}1⩽ 𝑗⩽𝑚 are fixed (appropriately chosen) functions. On the other hand,
spatially localized controls means that the support in space of 𝐵𝑢 is contained in
some proper subset of T2; see Theorem 2.5 below fore more details.

Assuming that (1.4)–(1.6) admits a solution 𝑣, we consider the associated
diffusion–advection system

𝜕𝜑𝑣

𝜕𝑡
(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) · ∇𝜑𝑣 (𝑡, 𝑥) − Δ𝜑𝑣 (𝑡, 𝑥) = 0 (𝑡 ⩾ 0, 𝑥 ∈ T2), (1.8)

𝜑𝑣 (0, 𝑥) = 𝑓 (𝑥) (𝑥 ∈ T2). (1.9)

By analogy with Definition 1.1, we set

Definition 1.3. Let 𝑣0 = ℎ = 0. The control system (1.4)–(1.6) is said to be
relaxation enhancing if for every 𝜏, 𝛿 > 0, there exists 𝑢 ∈ 𝐿2( [0, 𝜏];𝑈) such that
the solution 𝜑𝑣 of the system (1.8) and (1.9), where 𝑣 is the solution of (1.4)–(1.6),
satisfies

∥𝜑𝑣 (𝜏, ·)∥𝐿2 (T2 ) < 𝛿

for every 𝑓 ∈ 𝐿2(T2) with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 and
∫
T2 𝑓 (𝑥) d𝑥 = 0.

Remark 1.4. The simplifying assumption 𝑣0 = ℎ = 0 in the definition above will be
removed in our main result; see Theorem 2.4.
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In other words, a relaxation enhancing control system can produce a (time-
dependent) relaxation enhancing velocity field by means of a small number of
control functions acting as the external force of the incompressible Euler equations.

The precise statements of our main results require some preparation, so we
postpone them to Theorem 2.4 and Theorem 2.5 in Section 2. However, we can
already state here a consequence of Theorem 2.4.

Corollary 1.5. Let 𝑚 = 4 and

𝜃1(𝑥) = [0, 1]⊤ sin(𝑥1), 𝜃2(𝑥) = [0, 1]⊤ cos(𝑥1),
𝜃3(𝑥) = [1, 1]⊤ sin(𝑥1 − 𝑥2), 𝜃4(𝑥) = [1, 1]⊤ cos(𝑥1 − 𝑥2).

Then the control system (1.4)–(1.6), with 𝐵 given by (1.7), is relaxation enhancing.

The remaining part of this article is organized as follows. In Section 2, we
provide precise statements of our main results and briefly describe the strategy of
the proofs. In Section 3, we show that the mapping that sends a divergence-free
advection field to the solution of the corresponding advection–diffusion system
is Hölder continuous from the space of advection velocities endowed with the
relaxation norm (3.10) to standard function spaces for the solutions of the diffusion–
advection system. Section 4 is exclusively devoted to the proof of approximate
tracking controllability for the Euler system driven by a frequency-localized force.
In Section 5, we give a short proof for the exact controllability of the incompressible
Euler equations on T2 with controls supported in an arbitrary open set ω ⊂ T2 for
which T2 \ ω is simply-connected. Finally, in Section 6, we complete the proofs of
our main results.

2 Main results

In this section, we introduce some notation and preliminaries used throughout
this paper. After this preparation, we state our main results in Theorems 2.4 and 2.5.

For 𝑑 ∈ N with 𝑑 ⩾ 2, the standard inner product of two vectors 𝑣, 𝑤 ∈ R𝑑 is
denoted by 𝑣 · 𝑤, while T𝑑 stands for the standard 𝑑-dimensional torus R𝑑/2𝜋Z𝑑 .
Moreover, for every 𝑘 ∈ N ∪ {0} we denote by 𝐻𝑘 the Sobolev space of zero
average scalar functions

𝐻𝑘 B

{
𝜑 ∈ 𝐻𝑘 (T𝑑) :

∫
T𝑑
𝜑(𝑥) d𝑥 = 0

}
. (2.1)

The space 𝐻0 is endowed with the standard 𝐿2 inner product and induced norm.
Let −𝐴0 be the Laplacian on 𝐻0, which means that 𝐴0 : D(𝐴0) → 𝐻0 with

D(𝐴0) = 𝐻2, (2.2)
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𝐴0𝑔 = −Δ𝑔 (𝑔 ∈ D(𝐴0)). (2.3)

The result below gathers, for later use, some well-known properties of 𝐴0.

Proposition 2.1. Let 𝐴0 be the operator defined in (2.2) and (2.3). Then

(i) 𝐴0 is strictly positive on 𝐻0, which means that 𝐴0 is self-adjoint and there
exists 𝑐0 > 0 such that

⟨𝐴0𝑔, 𝑔⟩𝐿2 (T𝑑 ) ⩾ 𝑐0∥𝑔∥2
𝐿2 (T𝑑 ) (𝑔 ∈ D(𝐴0)).

(ii) For every 𝑚 ∈ N we have that D(𝐴𝑚
0 ) = 𝐻2𝑚. Moreover, for every 𝑘 ∈ N,

the standard inner product in 𝐻𝑘 is equivalent to the inner product ⟨·, ·⟩𝑘
defined by

⟨𝑔1, 𝑔2⟩𝑘 = ⟨𝐴
𝑘
2
0 𝑔1, 𝐴

𝑘
2
0 𝑔2⟩𝐿2 (T𝑑 ) (𝑔1, 𝑔2 ∈ 𝐻𝑘). (2.4)

(iii) For every 𝑘 ∈ N the part of 𝐴0 in 𝐻𝑘 defines a strictly positive operator on
𝐻𝑘 , with domain 𝐻𝑘+2.

Next, for 𝑑, 𝑘 ∈ N we denote by 𝐻𝑘 (T𝑑;R𝑑) the space of vector functions
𝑣 = [𝑣1, . . . , 𝑣𝑑]⊤ with components belonging to the Sobolev space 𝐻𝑘 defined
in (2.1). For the remaining part of this work, the standard 𝐻𝑘 norm is denoted
by ∥ · ∥𝑘 . We also set

𝐻𝑘
𝜎 B 𝐻𝑘

𝜎 (T𝑑;R𝑑) B 𝐻𝑘 (T𝑑;R𝑑) ∩ H , (2.5)

where H is given by

H B
{
𝑣 ∈ 𝐿2(T𝑑;R𝑑) : div 𝑣 = 0,

∫
T𝑑
𝑣(𝑥) d𝑥 = 0

}
. (2.6)

Note that 𝐻𝑘
𝜎 is a Hilbert space when endowed with the norm

∥𝑣∥2
𝐻𝑘

𝜎
=

𝑑∑︁
𝑗=1

∥𝑣 𝑗 ∥2
𝑘 .

We denote by Π the orthogonal projection from 𝐿2(T𝑑;R𝑑) onto H , where
the space H has been defined in (2.6). Moreover, for 𝑘 > 𝑑

2 we define

𝑁 (𝑣) = Π [(𝑣 · ∇)𝑣] (𝑣 ∈ 𝐻𝑘 (T𝑑;R𝑑)). (2.7)

We next recall some notation from Agrachev and Sarychev [1] and Shirikyan [32].
For any finite-dimensional subspace 𝐸 ⊂ 𝐻𝑘+2

𝜎 , we denote by F (𝐸) the largest
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vector space 𝐹 ⊂ 𝐻𝑘+2
𝜎 such that any 𝜂1 ∈ 𝐹 can be represented in the form

𝜂1 = 𝜂 −
𝑝∑︁
𝑖=1

𝑁 (𝜁 𝑖)

for some 𝑝 ∈ N and vectors 𝜂, 𝜁1, . . . , 𝜁 𝑝 ∈ 𝐸 . As the space 𝐸 is finite-dimensional
and 𝑁 is quadratic, it is easy to see that F (𝐸) is well-defined. A non-decreasing
sequence of subspaces {𝐸 𝑗} 𝑗∈N∪{0,∞} is defined by recurrence as follows:

𝐸0 = 𝐸, 𝐸 𝑗 = F (𝐸 𝑗−1) for 𝑗 ∈ N, 𝐸∞ =

∞⋃
𝑗=1
𝐸 𝑗 . (2.8)

Definition 2.2. The space 𝐸 is said to be saturating if 𝐸∞ is dense in 𝐻𝑘
𝜎 .

Remark 2.3. We note that for the saturating space 𝐸 given in Example 4.3
(cf. Lemma 4.2), the set 𝐸∞ is actually dense in 𝐻𝑙

𝜎 for all 𝑙 ∈ N.
We are now in a position to state the first main result of this paper:

Theorem 2.4. Let 𝑣0 ∈ 𝐻4
𝜎 and ℎ ∈ 𝐿1

𝑙𝑜𝑐
( [0,∞);𝐻4

𝜎). Assume that 𝐸 is a finite-
dimensional subspace of 𝐻6

𝜎 and that it is saturating. Let {𝜃1, . . . , 𝜃𝑚} be a basis
of 𝐸 and define 𝐵 by (1.7). Then for every 𝜏, 𝛿 > 0, there exists 𝑢 ∈ 𝐶∞( [0, 𝜏];R𝑚)
such that the solution 𝜑𝑣 of the system (1.8) and (1.9), where 𝑣 is the solution
of (1.4)–(1.6), satisfies

∥𝜑𝑣 (𝜏, ·)∥𝐿2 (T2 ) < 𝛿 (2.9)

for every 𝑓 ∈ 𝐿2(T2) with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 and
∫
T2 𝑓 (𝑥) d𝑥 = 0. In particular, the

control system (1.4)–(1.6), with 𝐵 given by (1.7), is relaxation enhancing.

A possible choice of a space 𝐸 satisfying the assumptions in Theorem 2.4 is
given by Example 4.3. Then, Corollary 1.5 is just Theorem 2.4 with this choice
of 𝐸 .

In Theorem 2.4, the input function takes values in a finite-dimensional space
𝐸 and is active on all of T2. An interesting question is whether one can construct
relaxation enhancing control systems with inputs which are active only on a strict
subset of T2 (also called spatially localized controls). At this stage, however, it
is difficult to achieve the conclusion of Theorem 2.4 with such controls. Let us
explain the difficulty: to cause relaxation enhancement, we need to make sure by
choosing an appropriate control input 𝑢 in (1.4)–(1.6) that the solution 𝑣 stays close
to 𝑎�̃� (where �̃� is relaxation enhancing in the sense of Definition 1.1 and 𝑎 is a
large constant) during a time interval. However, controlling solutions to PDEs over
an interval of time—as opposed to controlling at an instant of time—is in general a
very difficult task. To our knowledge, no such result with spatially localized control
is known for nonlinear fluid dynamical equations (see the discussion of tracking
controllability in the beginning of Section 4).
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Nevertheless, we give below a partial result for relaxation enhancement via
distributed internal controls. Namely, we prove that it is possible to enhance the
decay of a certain projection of the solution 𝜑𝑣 of (1.8) and (1.9). More precisely,
we have:

Theorem 2.5. Let ω ⊂ T2 be open and such that T2 \ ω is simply-connected. Let
𝐵 ∈ L(𝐿2(T2)) be defined by

𝐵u = Iωu (u ∈ 𝐿2(T2)),

where Iω is the characteristic function of ω. Moreover, let 𝑋 be the Hilbert space

𝑋 =

{
𝑔 ∈ 𝐿2(T2) :

∫
T
𝑔(𝑥1, 𝑥2) d𝑥1 = 0 for a.e. 𝑥2 ∈ T

}
, (2.10)

endowed with the 𝐿2(T2) inner product and let P𝑋 be the orthogonal projector
from 𝐿2(T2) onto 𝑋 . Then for every 𝜏, 𝛿 > 0 there exists 𝑢 ∈ 𝐿2( [0, 𝜏]; 𝐿2(T2))
such that the solution 𝜑𝑣 of the system (1.8) and (1.9), where 𝑣 satisfies (1.4)–(1.6)
with ℎ = 0, is such that

∥P𝑋𝜑𝑣 (𝜏, ·)∥𝐿2 (T2 ) < 𝛿,

for every 𝑓 ∈ 𝐿2(T2) with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1.

Remark 2.6. An example of ω satisfying the assumption in Theorem 2.5 is

ω = {(𝑎, 𝑏) × (0, 2𝜋)} ∪ {(0, 2𝜋) × (𝑐, 𝑑)} ⊂ T2,

where 0 < 𝑎 < 𝑏 < 2𝜋 and 0 < 𝑐 < 𝑑 < 2𝜋.
Let us also remark that by choosing an appropriate external force ℎ so that a

relaxation enhancing vector field �̃� is an exact solution of (1.4)–(1.6), we can get
rid of the projection. More precisely, we have:

Proposition 2.7. Assume that �̃� ∈ 𝐻6(T2;R2) is a relaxation enhancing divergence-
free vector field in the sense of Definition 1.1. Let 𝜏, 𝛿 > 0, and let 𝑎 > 0 be such
that for every 𝑓 ∈ 𝐿2(T2), with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 and

∫
T2 𝑓 (𝑥) d𝑥 = 0, the solution

𝜙𝑎 of (1.1) and (1.2) satisfies

∥𝜙𝑎 (𝜏, ·)∥𝐿2 (T2 ) < 𝛿.

Moreover, let ℎ ∈ 𝐻5(T2;R2) be such that

∇ ∧
[
ℎ − 𝑎2(�̃� · ∇�̃�)

]
= 0.

Then under the notation and the assumptions in Theorem 2.5, there exists 𝑢 ∈
𝐿2( [0, 𝜏];𝐻2(T2;R2)) such that the solution 𝜑𝑣 of the system (1.8) and (1.9)
satisfies (2.9), where 𝑣 is the solution of (1.4)–(1.6) with ℎ as above.
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Remark 2.8. A natural open question would be to remove the projection in
Theorem 2.5. An even harder problem is to consider controls active on a strict
subset of T2 and taking values in a finite-dimensional space 𝐸 . This would be
too ambitious for the present study even with the projection, as already the basic
question of final state approximate controllability for incompressible fluids driven
by finite-dimensional and physically localized controls corresponds to a well-
known open problem posed by Agrachev in [2, Section 7]; see also Nersesyan and
Rissel [29].

To end this section we describe, for reader’s convenience, the main ideas in the
proofs of our main results in Theorem 2.4 and Theorem 2.5.

The main ingredient of the proof of Theorem 2.4 is a new approximate tracking
controllability result for a system described by the incompressible Euler equations
with a finite number of scalar controls. The term approximate tracking controllability
means that the state of the system is maintained close (in an appropriate sense) to
a reference trajectory for every time smaller than some given 𝑇 > 0. This result
is then used to prove Theorem 2.4 in two steps. Firstly, we use the approximate
tracking controllability result to obtain a control 𝑢 such that the state trajectory 𝑣
of (1.4)–(1.6) (with 𝐵 given by (1.7)) stays close to 𝑎�̃�, where 𝑎 and �̃� are chosen
so that the solution 𝜙𝑎 of (1.1) and (1.2) satisfies (6.1) for any given 𝜏, 𝛿 > 0. We
next show, using Theorem 3.2 below, that the corresponding solution 𝜑𝑣 of (1.8)
and (1.9) stays close to 𝜙𝑎; thus, it satisfies (2.9).

We use a different strategy to prove Theorem 2.5. The main idea is that the
enhancement of decay of the projection is possible with shear flows (see e.g.
Bedrossian and Coti Zelati [6]). Since shear flows are exact solutions to the Euler
system, controllability of solutions to a shear flow at an instant of time implies
exact tracking controllability of the shear flow after this instant: we just turn off the
control immediately after the solution of the Euler system reached the shear flow,
then the solution remains the same shear flow afterwards. Thus, Theorem 2.5 can be
proved using a global exact controllability result for the Euler equation, which we
develop in Section 5. We note that this strategy does not work for the Navier–Stokes
equations since there is no nontrivial periodic stationary shear flow solution. On
the other hand, it is possible to extend Theorem 2.4 to the Navier–Stokes equations,
where the analysis would be less technical due to better regularity properties.

3 A continuous dependence result

The aim of this section is to prove that the solution 𝜑𝑣 of (1.8) and (1.9)
depends continuously on the initial data 𝑓 and the advection velocity 𝑣. While
continuity with respect to 𝑓 involves the norms of the standard Sobolev spaces
defined in (2.1), the continuity with respect to 𝑣 involves a less standard norm,
which is defined in (3.10) below. As the results in this section are not specific to
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two space dimensions, we consider here the following diffusion–advection system
in T𝑑 with a fixed integer 𝑑 ⩾ 2:

𝜕𝜑𝑣

𝜕𝑡
(𝑡, 𝑥) + 𝑣(𝑡, 𝑥) · ∇𝜑𝑣 (𝑡, 𝑥) − Δ𝜑𝑣 (𝑡, 𝑥) = 0 (𝑡 ⩾ 0, 𝑥 ∈ T𝑑), (1.8′)

𝜑𝑣 (0, 𝑥) = 𝑓 (𝑥) (𝑥 ∈ T𝑑), (1.9′)

where 𝑣 is a given divergence-free vector field on T𝑑 .
Let 𝑋 be a Banach space endowed with a norm denoted by ∥ · ∥𝑋, 𝑇 > 0,

and 𝐽𝑇 = [0, 𝑇]. For 1 ⩽ 𝑝 < ∞, the notation 𝐿 𝑝 (𝐽𝑇 ; 𝑋) stands for the space of
strongly measurable functions 𝑣 : 𝐽𝑇 → 𝑋 such that

∥𝑣∥𝐿𝑝 (𝐽𝑇 ;𝑋) B

( ∫ 𝑇

0
∥𝑣(𝑠)∥ 𝑝

𝑋
d𝑠

) 1
𝑝

< ∞.

The spaces 𝐶 (𝐽𝑇 ; 𝑋) and 𝑊 𝑘, 𝑝 (𝐽𝑇 ; 𝑋) are defined in a similar way. We first note
that the system (1.8′) and (1.9′) is well-posed. Although versions of this result are
currently used in the literature we provide, for readers’ convenience, a complete
proof below.

Proposition 3.1. Let 𝑇 > 0 and 𝑘 ∈ N with 𝑘 > 𝑑
2 . Then for every 𝑓 ∈ 𝐻𝑘+2 and

𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) there exists a unique solution

𝜑𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2) ∩ 𝐿2(𝐽𝑇 ;𝐻𝑘+3) ∩ 𝐻1(𝐽𝑇 ;𝐻𝑘+1) (3.1)

of (1.8′) and (1.9′). Moreover, assume that 𝑓 and 𝑣 are such that

∥ 𝑓 ∥𝑘+2 + ∥𝑣∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) ⩽ 𝑅

for some 𝑅 > 0. Then there exists a constant 𝐶 B 𝐶 (𝑅,𝑇, 𝑘, 𝑑) > 0 such that

∥𝜑𝑣∥𝐶 (𝐽𝑇 ;𝐻𝑘+2 ) + ∥𝜑𝑣∥𝐿2 (𝐽𝑇 ;𝐻𝑘+3 ) ⩽ 𝐶. (3.2)

Proof. Let �̃� = 𝐻𝑘+3 and �̃� = 𝐻𝑘+2, where the spaces 𝐻𝑙, with 𝑙 ∈ N, have been
introduced in (2.1) and they are endowed with the inner products defined in (2.4).
It is easily seen that �̃� ⊂ �̃� with continuous and dense embedding and that the
dual �̃� ′ of �̃� with respect to the pivot space �̃� is 𝐻𝑘+1.

For every 𝑡 ∈ [0, 𝑇] we define the linear operator 𝐿 (𝑡) mapping 𝛾 ∈ �̃� into
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𝑣(𝑡, ·) · ∇𝛾. Using the fact that �̃� is a Banach algebra, we have

∥𝐿 (𝑡)𝛾∥�̃� = ∥𝐿 (𝑡)𝛾∥𝑘+2 ⩽
𝑑∑︁
𝑗=1

𝑣 𝑗 (𝑡, ·) 𝜕𝛾𝜕𝑥 𝑗

𝑘+2

⩽
𝑑∑︁
𝑗=1

∥𝑣 𝑗 (𝑡, ·)∥𝑘+2

 𝜕𝛾𝜕𝑥 𝑗

𝑘+2

⩽ 𝑑𝐶𝑀𝑇 ∥𝛾∥�̃� (𝛾 ∈ �̃� , 𝑡 ∈ 𝐽𝑇 a.e.), (3.3)

where 𝐶 = 𝐶 (𝑘, 𝑑) > 0 is the constant for the Sobolev inequality and

𝑀𝑇 = max
𝑗∈{1,...,𝑑}

max
𝑡∈[0,𝑇 ]

∥𝑣 𝑗 (𝑡, ·)∥𝑘+2.

It follows that the bilinear form

𝑎(𝑡; 𝛾, 𝜁) = ⟨𝛾, 𝜁⟩�̃� + ⟨𝐿 (𝑡)𝛾, 𝜁⟩�̃�
= ⟨𝛾, 𝜁⟩𝑘+3 + ⟨𝐿 (𝑡)𝛾, 𝜁⟩𝑘+2 (𝑡 ∈ 𝐽𝑇 , 𝛾, 𝜁 ∈ �̃�) (3.4)

satisfies

|𝑎(𝑡; 𝛾, 𝜁) | ⩽ (1 + 𝑑𝐶𝑀𝑇 )∥𝛾∥�̃� ∥𝜁 ∥�̃� (𝑡 ∈ 𝐽𝑇 , 𝛾, 𝜁 ∈ �̃�). (3.5)

Moreover, using (3.3), it follows that for every 𝜁 ∈ �̃� we have

Re ⟨𝐿 (𝑡)𝛾, 𝛾⟩�̃� ⩽ 𝑑𝐶𝑀𝑇 ∥𝛾∥�̃� ∥𝛾∥�̃� ⩽
1
2

(
∥𝛾∥2

�̃�
+ 𝑑2𝐶2𝑀2

𝑇 ∥𝛾∥2
�̃�

)
.

Putting together the above estimate and (3.4) it follows that

Re 𝑎(𝑡; 𝛾, 𝛾) ⩾ 1
2
∥𝛾∥2

�̃�
− 1

2
𝑑2𝐶2𝑀2

𝑇 ∥𝛾∥2
�̃�

(𝑡 ∈ 𝐽𝑇 , 𝛾 ∈ �̃�). (3.6)

By combining (3.5), (3.6), and a classical result, see for instance Dautray and
Lions [13, p. 513] or Dier and Zacher [14], it follows that for every 𝑓 ∈ �̃� and
𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2

𝜎 ) there exists a unique function

𝜑𝑣 ∈ 𝐶 (𝐽𝑇 ; �̃�) ∩ 𝐿2(𝐽𝑇 ; �̃�) ∩ 𝐻1(𝐽𝑇 ; �̃� ′) (3.7)

satisfying〈
𝜕𝜑𝑣

𝜕𝑡
(𝑡, ·), 𝜁

〉
�̃� ′ ,�̃�

+ 𝑎(𝑡; 𝜑𝑣 (𝑡, ·), 𝜁) = 0 (𝜁 ∈ �̃� , 𝑡 ∈ 𝐽𝑇 a.e.), (3.8)

𝜑𝑣 (0, ·) = 𝑓 . (3.9)

It is easily seen that 𝜑𝑣 satisfies (3.7), (3.8), and (3.9) if and only if 𝜑𝑣 satisfies
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(3.1), (1.8′), and (1.9′). Thus, for every 𝑓 ∈ 𝐻𝑘+2 and 𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) there exists

a unique solution

𝜑𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2) ∩ 𝐿2(𝐽𝑇 ;𝐻𝑘+3) ∩ 𝐻1(𝐽𝑇 ;𝐻𝑘+1)

of (1.8′) and (1.9′).
Taking next 𝜁 = 𝜑𝑣 (𝑡, ·) in (3.8) and using (3.6) it follows that

1
2

d
d𝑡
∥𝜑𝑣 (𝑡, ·)∥2

�̃�
+ 1

2
∥𝜑𝑣 (𝑡, ·)∥2

�̃�
⩽

1
2
𝑑2𝐶2𝑀2

𝑇 ∥𝜑𝑣 (𝑡, ·)∥2
�̃�
.

Finally, the conclusion (3.2) follows from the last estimate by applying Grönwall’s
inequality. □

In order to state the main result in this section we introduce the relaxation
norm of 𝑣 ∈ 𝐿1(𝐽𝑇 ; 𝑋), where 𝑋 is a Banach space, defined as follows (cf. Gamkre-
lidze [17] and Agrachev and Sarychev [1]):

| | |𝑣 | | |𝑇,𝑋 B sup
𝑡∈𝐽𝑇

∫ 𝑡

0
𝑣(𝑠) d𝑠


𝑋

. (3.10)

Theorem 3.2. Let 𝑇 > 0 and 𝑘 ∈ N with 𝑘 > 𝑑
2 . For every 𝑓 ∈ 𝐻𝑘+2 and

𝑣1, 𝑣2 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) let

𝜑𝑣1 , 𝜑𝑣2 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+2) ∩ 𝐿2(𝐽𝑇 ;𝐻𝑘+3) ∩ 𝐻1(𝐽𝑇 ;𝐻𝑘+1)

be the corresponding solutions of (1.8′) and (1.9′), as constructed in Proposition 3.1.
Moreover, assume that 𝑓 , 𝑣1, 𝑣2 are such that

∥ 𝑓 ∥𝑘+2 + ∥𝑣1∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) + ∥𝑣2∥𝐶 (𝐽𝑇 ;𝐻𝑘+2

𝜎 ) ⩽ 𝑅 (3.11)

for some 𝑅 > 0. Then there exists a constant 𝐶 B 𝐶 (𝑅,𝑇, 𝑘, 𝑑) > 0 such that

∥𝜑𝑣1 − 𝜑𝑣2 ∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) ⩽ 𝐶 | | |𝑣1 − 𝑣2 | | |
1/2
𝑇,𝑘
, (3.12)

where | | | · | | |𝑇,𝑘 stands for the relaxation norm defined in (3.10) with 𝑋 = 𝐻𝑘 .

Proof. Within this proof we denote by the same letter 𝐶 a generic constant possibly
depending on 𝑅,𝑇, 𝑘, and 𝑑. Moreover, for notational simplicity, instead of 𝜑𝑣1

and 𝜑𝑣2 we simply write 𝜑1 and 𝜑2.
We set 𝜑(𝑡) B 𝜑2(𝑡) − 𝜑1(𝑡) and note that 𝜑 satisfies

𝜕𝜑

𝜕𝑡
− Δ𝜑 + 𝑣1 · ∇𝜑 + (𝑣2 − 𝑣1) · ∇𝜑2 = 0 in 𝐽𝑇 × T𝑑 , (3.13)

𝜑(0, ·) = 0 in T𝑑 . (3.14)
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Taking the inner product in 𝐻𝑘 of (3.13) with 𝜑, integrating with respect to time
and using (3.14) we obtain that:

1
2
∥𝜑(𝑡)∥2

𝑘 +
∫ 𝑡

0
∥𝜑∥2

𝑘+1 d𝑠 = −
∫ 𝑡

0
⟨𝑣1 · ∇𝜑, 𝜑⟩𝑘 d𝑠

−
∫ 𝑡

0
⟨(𝑣2 − 𝑣1) · ∇𝜑2, 𝜑⟩𝑘 d𝑠

C 𝐼1 + 𝐼2. (3.15)

As 𝑘 > 𝑑
2 implies that 𝐻𝑘 is an algebra, using (3.11), we have

|𝐼1 | ⩽
∫ 𝑡

0
∥𝑣1∥𝑘 ∥𝜑∥𝑘+1 ∥𝜑∥𝑘 d𝑠

⩽
1
2

∫ 𝑡

0
∥𝜑∥2

𝑘+1 d𝑠 + 1
2

∫ 𝑡

0
∥𝑣1∥2

𝑘 ∥𝜑∥
2
𝑘 d𝑠

⩽
1
2

∫ 𝑡

0
∥𝜑∥2

𝑘+1 d𝑠 + 𝐶
∫ 𝑡

0
∥𝜑∥2

𝑘 d𝑠 (3.16)

for some 𝐶 > 0. To estimate 𝐼2, let �̃�(𝑡) = ∫ 𝑡0 (𝑣1(𝜎) − 𝑣2(𝜎)) d𝜎. Then, denoting
the partial derivative with respect to 𝑡 by ′,

𝐼2 =

∫ 𝑡

0
⟨(𝑣1 − 𝑣2) (𝑠) · ∇𝜑2(𝑠), 𝜑(𝑠)⟩𝑘 d𝑠

=

∫ 𝑡

0
⟨�̃�′(𝑠) · ∇𝜑2(𝑠), 𝜑(𝑠)⟩𝑘 d𝑠

= ⟨�̃�(𝑡) · ∇𝜑2(𝑡), 𝜑(𝑡)⟩𝑘

−
∫ 𝑡

0
⟨�̃�(𝑠) · ∇𝜑′2(𝑠), 𝜑(𝑠)⟩𝑘 d𝑠 −

∫ 𝑡

0
⟨�̃�(𝑠) · ∇𝜑2(𝑠), 𝜑′(𝑠)⟩𝑘 d𝑠.

(3.17)

Using the fact that �̃� is divergence-free, it is easily checked that∫ 𝑡

0
⟨�̃�(𝑠) · ∇𝜑′2(𝑠), 𝜑(𝑠)⟩𝑘 d𝑠 = −

∫ 𝑡

0
⟨𝜑′2(𝑠) �̃�(𝑠),∇𝜑(𝑠)⟩𝑘 d𝑠. (3.18)

Then (3.17) and (3.18), together with (3.11) and estimate (3.2) in Proposition 3.1,
we obtain

|𝐼2 | ⩽ 𝐶 sup
0⩽𝑠⩽𝑡

∥ �̃�(𝑠, ·)∥𝑘 ⩽ 𝐶 | | |�̃� | | |𝑇,𝑘 (3.19)

for some 𝐶 > 0. Finally, (3.15), (3.16), and (3.19) combined with Grönwall’s
inequality imply the required inequality (3.12). □
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4 Approximate tracking controllability

In this section, we establish a new approximate controllability result for the
Euler equations using control functions with values in a fixed finite-dimensional
space (see Theorem 4.1). This will play a central role in the proof of Theorem 2.4.

Our approach is strongly inspired by the methods introduced by Agrachev and
Sarychev [1, 3] for the approximate controllability of the final state for the 2D
Euler and Navier–Stokes equations using finite-dimensional controls. These results
have been extended to the 3D Navier–Stokes equations by Shirikyan [32, 33] and
to the 3D Euler equations by Nersisyan [30].

An essential feature of our result is that, unlike in standard controllability theory,
we do not control just the final state but the complete state trajectory: we prove the
existence of controls such that the state trajectory remains arbitrarily close—with
respect to the relaxation norm introduced in (3.10)—to any prescribed space-time
function 𝜓 = 𝜓(𝑡, 𝑥). Remarkably, the here exposed mechanism heavily relies on
the nonlinear character of the Euler system. As far as we know, the only existing
work addressing the approximate controllability of the complete state trajectory for
a nonlinear PDE system is by Nersesyan [28], who studied this question for the
3D Navier–Stokes equations. We show below that the methods in [28, 30, 32, 33]
can be extended to obtain a new approximate controllability result for a system
described by the 2D Euler equations.

On the other hand, let us note that we are unaware of any non-trivial linear
control system for which controllability of the complete state trajectory has been
shown. However, the question of tracking a finite-dimensional output of a system
has been studied in several papers. We can mention in this sense the recent
work of Zamorano and Zuazua [37] considering finite-dimensional linear systems,
where this property is called tracking controllability. Moreover, there are several
results proving tracking controllability of a finite-dimensional output of an infinite-
dimensional system, such as Bárcena-Petisco and Zuazua [4], in which the tracking
controllability of some boundary values of the heat equation is studied. Another
result on tracking of a finite-dimensional output can be found in Glass et al. [19],
where the authors prove a tracking boundary controllability property for trajectories
of rigid bodies in a two-dimensional incompressible perfect fluid (the fluid motion
is not controlled). One of the advantages of frequency-localized controls is the
possibility to control the complete state trajectory of the system, which is critical
for relaxation enhancement.

Notation reminder

We continue here to use the notation introduced in Sections 2 and 3, including
the function spaces

{
𝐻𝑘

𝜎

}
𝑘∈N defined in (2.5). Moreover, for every 𝑇 > 0 we still

denote by 𝐽𝑇 the interval [0, 𝑇] and we consider the spaces 𝐿 𝑝 (𝐽𝑇 ; 𝑋), 𝐶 (𝐽𝑇 ; 𝑋),
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and 𝑊 𝑘, 𝑝 (𝐽𝑇 ; 𝑋) introduced at the beginning of Section 2. Finally, in this section
we consider only the case of two space dimensions, i.e., we take 𝑑 = 2 in the
definition of the above-mentioned spaces.

Euler system driven by finite-dimensional controls

For 𝑘 ∈ N, let 𝐸 be a finite-dimensional subspace of 𝐻𝑘+4
𝜎 and let {𝜃1, . . . , 𝜃𝑚}

be a basis of 𝐸 . Consider an ideal incompressible fluid flow described (0,∞) × T2

by the following initial-value problem for the Euler system:

𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣 + ∇𝑝 = ℎ +

𝑚∑︁
𝑗=1
𝑢 𝑗𝜃 𝑗 , div 𝑣 = 0, 𝑣(0, ·) = 𝑣0 (4.1)

where ℎ is the fixed part of the external force (given function, assumed to be
smooth enough with respect to the space variable, divergence-free, and integrable
with respect to time) and 𝑢 = [𝑢1, . . . , 𝑢𝑚]⊤ is the control function. As usual, the
pressure term can be eliminated by considering the projection of the system onto
the space H which has been introduced in (2.6). We obtain in this way that (4.1)
can be rephrased as:

𝜕𝑣

𝜕𝑡
+ 𝑁 (𝑣) = ℎ +

𝑚∑︁
𝑗=1
𝑢 𝑗𝜃 𝑗 in (0,∞) × T2, (4.2)

𝑣(0, ·) = 𝑣0 in T2, (4.3)

where the nonlinear operator 𝑁 has been defined in (2.7).

Approximate tracking controllability

In what follows, we fix 𝑇 > 0 and assume that ℎ ∈ 𝐿1(𝐽𝑇 ;𝐻𝑘+2
𝜎 ). For the well-

posedness of the system (4.2) and (4.3) we refer to the papers [20,24,25,27,36] or
to Chapter 17 in [34]. In particular, when 𝑘 ⩾ 3, it is known that for any 𝑣0 ∈ 𝐻𝑘

𝜎

and 𝑢 ∈ 𝐿1(𝐽𝑇 ;R𝑚), there is a unique solution 𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘
𝜎) ∩𝑊1,1(𝐽𝑇 ;𝐻𝑘−1

𝜎 ).
Given any 𝑓 ∈ 𝐻𝑘 and 𝑣 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘

𝜎), we denote by 𝜑𝑣 the unique solution of the
problem (1.8) and (1.9).

Theorem 4.1. For 𝑘 ⩾ 2, let 𝐸 ⊂ 𝐻𝑘+4
𝜎 be a saturating subspace. Then, for

any 𝜀 > 0, 𝜓 ∈ 𝑊1,1(𝐽𝑇 ;𝐻𝑘+2
𝜎 ) ∩ 𝐿1(𝐽𝑇 ;𝐻𝑘+3

𝜎 ), and 𝑅 > 0, there is a control
𝑢 ∈ 𝐶∞(𝐽𝑇 ;R𝑚) such that

∥𝑣(𝑇) − 𝜓(𝑇)∥𝑘+2 + || |𝑣 − 𝜓 | | |𝑇,𝑘 + ∥𝜑𝑣 − 𝜑𝜓 ∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) < 𝜀,

uniformly with respect to 𝑓 ∈ 𝐻𝑘+2 with ∥ 𝑓 ∥𝑘+2 ⩽ 𝑅, where 𝑣 is the solution
of (4.2) with initial condition 𝑣(0) = 𝜓(0), 𝜑𝑣 is the solution of the problem (1.8)
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and (1.9), and 𝜑𝜓 is the solution of the problem (1.8) and (1.9) with 𝑣 = 𝜓.

In order to prove the above result, we need some new notation and several
preliminaries.

Firstly, for every ℓ = [𝑙1, 𝑙2]⊤ ∈ Z2
∗, we define the functions

𝑐ℓ (𝑥) = ℓ⊥ cos(ℓ · 𝑥), 𝑠ℓ (𝑥) = ℓ⊥ sin(ℓ · 𝑥) (𝑥 ∈ T2),

where ℓ⊥ B [−𝑙2, 𝑙1]⊤. We note that the family {𝑐ℓ , 𝑠ℓ}ℓ∈Z2
∗

is a complete orthog-
onal system in 𝐻𝑘

𝜎 . For any finite subset K ⊂ Z2
∗, let

𝐸 (K) B span{𝑐ℓ , 𝑠ℓ : ℓ ∈ K}. (4.4)

We say that K is a generator if any vector in Z2 can be expressed as a finite
integer linear combination of elements from K. The following result provides a
characterization of saturating spaces of the form (4.4), see Section 4.1 in Hairer
and Mattingly [21] for a proof.

Lemma 4.2. The space 𝐸 (K) is saturating if and only if K is a generator of Z2

and contains two non-parallel vectors of different lengths.

A simple example of K satisfying the assumptions in the lemma above is given
below:
Example 4.3. Let K = {[1, 0]⊤; [1,−1]⊤}. Then, a saturating four-dimensional
space is given by

𝐸 (K) = span{𝜃1, 𝜃2, 𝜃3, 𝜃4},

where 𝜃1, . . . , 𝜃4 are the functions introduced in Corollary 1.5.

4.1 Proof of Theorem 4.1

In this subsection, we obtain Theorem 4.1 as a consequence of an auxiliary
result (Theorem 4.5) which states that any solution 𝑣 of (4.2) and (4.3) with a
control 𝑢 in 𝐸1 = F (𝐸), together with the solution 𝜑𝑣 of (1.8) and (1.9), can be
approximately tracked using the corresponding solutions with a control 𝑢 in 𝐸 .

Setup and well-posedness

Together with (4.2) and (4.3) we consider the system

𝜕𝑤

𝜕𝑡
+ 𝑁 (𝑤 + 𝜁) = ℎ + 𝑢 in [0, 𝑇] × T2, (4.5)

𝑤(0, ·) = 𝑤0 in T2 (4.6)

with two controls 𝜁 = 𝜁 (𝑡, 𝑥) and 𝑢 = 𝑢(𝑡, 𝑥). The following well-posedness
and stability result can be proved by applying the methods of the references
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[20, 24, 25, 27, 34, 36]; see also Theorem 2.1 in [30] for a similar result in the
context of the 3D Euler system.

Proposition 4.4. Let 𝑘 ⩾ 3 be an integer. Then for any 𝑇 > 0, 𝑤0 ∈ 𝐻𝑘
𝜎 ,

𝜁 ∈ 𝐿2(𝐽𝑇 ;𝐻𝑘+1
𝜎 ), and 𝑢 ∈ 𝐿1(𝐽𝑇 ;𝐻𝑘

𝜎), there is a unique solution 𝑤 ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘
𝜎)∩

𝑊1,1(𝐽𝑇 ;𝐻𝑘−1
𝜎 ) to the problem (4.5) and (4.6). Furthermore, the following proper-

ties hold:

(i) The operator R mapping a triple (𝑤0, 𝜁 , 𝑢) to the solution 𝑤 is continuous
from 𝐻𝑘

𝜎 × 𝐿2(𝐽𝑇 ;𝐻𝑘+1
𝜎 ) × 𝐿1(𝐽𝑇 ;𝐻𝑘

𝜎) to 𝐶 (𝐽𝑇 ;𝐻𝑘
𝜎) ∩𝑊1,1(𝐽𝑇 ;𝐻𝑘−1

𝜎 ).

(ii) The operator R is locally Lipschitz with respect to appropriately chosen
norms. More precisely, for any 𝑀 > 0, there is a constant 𝐶 > 0 such that

∥R(𝑤0, 𝜁 , 𝑢) − R(𝑣0, 𝜉, 𝑔)∥𝐶 (𝐽𝑇 ;𝐻𝑘−1
𝜎 )

⩽ 𝐶
(
∥𝑤0 − 𝑣0∥𝐻𝑘−1

𝜎
+ ∥𝜁 − 𝜉∥𝐿2 (𝐽𝑇 ;𝐻𝑘

𝜎 ) + ∥𝑢 − 𝑔∥𝐿1 (𝐽𝑇 ;𝐻𝑘−1
𝜎 )

)
,

provided that

∥𝑤0∥𝑘 + ∥𝑣0∥𝑘 + ∥𝜁 ∥𝐿2 (𝐽𝑇 ;𝐻𝑘+1
𝜎 ) + ∥𝜉∥𝐿2 (𝐽𝑇 ;𝐻𝑘+1

𝜎 )

+ ∥𝑢∥𝐿1 (𝐽𝑇 ;𝐻𝑘
𝜎 ) + ∥𝑔∥𝐿1 (𝐽𝑇 ;𝐻𝑘

𝜎 ) ⩽ 𝑀.

For 𝑇 > 0, let R𝑇 denote the operator (𝑤0, 𝜁 , 𝑢) ↦→ R𝑇 (𝑤0, 𝜁 , 𝑢) = 𝑤(𝑇, ·),
where 𝑤 solves (4.5) and (4.6) with initial state 𝑤0 and forces (𝜁, 𝑢). Moreover, we
introduce the resolving operator of the problem (1.8) and (1.9) by

Ψ : 𝐻𝑘+2 × 𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) → 𝐶 (𝐽𝑇 ;𝐻𝑘+2) ∩ 𝐿2(𝐽𝑇 ;𝐻𝑘+3) ∩ 𝐻1(𝐽𝑇 ;𝐻𝑘+1)

( 𝑓 , 𝑣) ↦→ 𝜑𝑣,

which is well-defined thanks to Proposition 3.1.

An auxiliary result

The proof of Theorem 4.1 uses the following auxiliary result which states that
any trajectory produced by a control 𝑢 in 𝐸1 = F (𝐸) can be approximately tracked
using a control 𝑢 in 𝐸 . Its proof is given in Section 4.2 below.

Theorem 4.5. Assume that 𝐸 is a finite-dimensional subspace of 𝐻𝑘+4
𝜎 and let

{𝐸 𝑗} 𝑗∈N∪{0,∞} be the sequence of subspaces defined in formula (2.8). Then, for
any 𝜀 > 0, 𝑅 > 0, 𝑤0 ∈ 𝐻𝑘+2

𝜎 , and 𝑢1 ∈ 𝐿1(𝐽𝑇 ; 𝐸1), there exists 𝑢 ∈ 𝐶∞(𝐽𝑇 ; 𝐸)
such that

∥R𝑇 (𝑤0, 0, 𝑢1) − R𝑇 (𝑤0, 0, 𝑢)∥𝑘+2 + || |R(𝑤0, 0, 𝑢1) − R(𝑤0, 0, 𝑢) | | |𝑇,𝑘
+∥Ψ( 𝑓 ,R(𝑤0, 0, 𝑢1)) − Ψ( 𝑓 ,R(𝑤0, 0, 𝑢))∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) < 𝜀
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uniformly with respect to 𝑓 ∈ 𝐻𝑘+2 with ∥ 𝑓 ∥𝑘+2 ⩽ 𝑅.

Taking Theorem 4.5 for granted, Theorem 4.1 is now obtained by developing
the arguments of the papers [1, 3, 28, 30, 32, 33].

Proof of Theorem 4.1. For any 𝜓 ∈ 𝑊1,1(𝐽𝑇 ;𝐻𝑘+2
𝜎 ) ∩ 𝐿1(𝐽𝑇 ;𝐻𝑘+3

𝜎 ), the control
𝑢∗ defined by

𝑢∗ B ¤𝜓 + 𝑁 (𝜓) − ℎ

belongs to 𝐿1(𝐽𝑇 ;𝐻𝑘+2
𝜎 ) and that 𝜓 = R(𝑤0, 0, 𝑢∗), where 𝑤0 = 𝜓(0). Since 𝐸∞ is

dense in 𝐻𝑘+2
𝜎 , we deduce that

∥P𝐸𝑁
𝑢∗ − 𝑢∗∥𝐿1 (𝐽𝑇 ;𝐻𝑘+2

𝜎 ) → 0 as 𝑁 → ∞,

where P𝐸𝑁
is the orthogonal projection onto 𝐸𝑁 in 𝐻𝑘+2

𝜎 . From Proposition 4.4 it
follows that

∥R(𝑤0, 0, P𝐸𝑁
𝑢∗) − 𝜓∥𝐶 (𝐽𝑇 ;𝐻𝑘+2

𝜎 ) → 0 as 𝑁 → ∞.

This and Theorem 3.2 imply that

∥R𝑇 (𝑤0, 0, P𝐸𝑁
𝑢∗) − 𝜓(𝑇)∥𝑘+2 + || |R(𝑤0, 0, P𝐸𝑁

𝑢∗) − 𝜓 | | |𝑇,𝑘
+ ∥Ψ( 𝑓 ,R(𝑤0, 0, P𝐸𝑁

𝑢∗)) − Ψ( 𝑓 , 𝜓)∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) → 0 as 𝑁 → ∞

uniformly with respect to 𝑓 ∈ 𝐻𝑘+2 with ∥ 𝑓 ∥𝑘+2 ⩽ 𝑅. Therefore, for any 𝜀 > 0
and sufficiently large 𝑁 ⩾ 1,

∥R𝑇 (𝑤0, 0, P𝐸𝑁
𝑢∗) − 𝜓(𝑇)∥𝑘+2 + || |R(𝑤0, 0, P𝐸𝑁

𝑢∗) − 𝜓 | | |𝑇,𝑘
+∥Ψ( 𝑓 ,R(𝑤0, 0, P𝐸𝑁

𝑢∗)) − Ψ( 𝑓 , 𝜓)∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) < 𝜀 (4.7)

for any 𝑓 ∈ 𝐻𝑘+2 with ∥ 𝑓 ∥𝑘+2 ⩽ 𝑅. Now, applying Theorem 4.5 with 𝜀 replaced
by 𝜀/𝑁 , we find 𝑢𝑁−1 ∈ 𝐶∞(𝐽𝑇 ; 𝐸𝑁−1), where {𝐸 𝑗} 𝑗∈N∪{0,∞} is defined in (2.8),
such that

∥R𝑇 (𝑤0, 0, P𝐸𝑁
𝑢∗) − R𝑇 (𝑤0, 0, 𝑢𝑁−1)∥𝑘+2

+ || |R(𝑤0, 0, P𝐸𝑁
𝑢∗) − R(𝑤0, 0, 𝑢𝑁−1) | | |𝑇,𝑘

+ ∥Ψ( 𝑓 ,R(𝑤0, 0, P𝐸𝑁
𝑢∗)) − Ψ( 𝑓 ,R(𝑤0, 0, 𝑢𝑁−1))∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) < 𝜀/𝑁. (4.8)

Similarly, there exists 𝑢 𝑗 ∈ 𝐶∞(𝐽𝑇 ; 𝐸 𝑗) ( 𝑗 = 0, 1, . . . , 𝑁 − 2) such that

∥R𝑇 (𝑤0, 0, 𝑢 𝑗+1) − R𝑇 (𝑤0, 0, 𝑢 𝑗)∥𝑘+2 + || |R(𝑤0, 0, 𝑢 𝑗+1) − R(𝑤0, 0, 𝑢 𝑗) | | |𝑇,𝑘
+∥Ψ( 𝑓 ,R(𝑤0, 0, 𝑢 𝑗+1)) − Ψ( 𝑓 ,R(𝑤0, 0, 𝑢 𝑗))∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) < 𝜀/𝑁. (4.9)
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Then combining (4.1)–(4.9), we obtain

∥R𝑇 (𝑤0, 0, 𝑢0) − 𝜓(𝑇)∥𝑘+2 + || |R(𝑤0, 0, 𝑢0) − 𝜓 | | |𝑇,𝑘
+∥Ψ( 𝑓 ,R(𝑤0, 0, 𝑢0)) − Ψ( 𝑓 , 𝜓)∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) < 2𝜀.

This shows that the conclusion of Theorem 4.1 holds with the control

𝑢 B 𝑢0 ∈ 𝐶∞(𝐽𝑇 ; 𝐸) � 𝐶∞(𝐽𝑇 ;R𝑚)

and the corresponding solution 𝑣 = R(𝑤0, 0, 𝑢0). □

4.2 Proof of Theorem 4.5

Here we establish Theorem 4.5, which was an essential ingredient of the
proof of Theorem 4.1. More precisely, we derive Theorem 4.5 from the following
proposition, which will be proven in the next subsection.

Proposition 4.6. For any piecewise constant function 𝑢1 : 𝐽𝑇 → 𝐸1, there is a
sequence {(𝑢𝑛, 𝜁𝑛)}𝑛∈N ⊂ 𝐶∞(𝐽𝑇 ; 𝐸 × 𝐸) such that

sup
𝑛∈N

(
∥𝜁𝑛∥𝐶 (𝐽𝑇 ;𝐻𝑘+2

𝜎 ) + ∥𝑢𝑛∥𝐿2 (𝐽𝑇 ;𝐻𝑘+2
𝜎 )

)
< ∞ (4.10)

and

∥R(𝑤0, 0, 𝑢1) − R(𝑤0, 𝜁𝑛, 𝑢𝑛)∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) + || |𝜁𝑛 | | |𝑇,𝑘 → 0 as 𝑛→ ∞ (4.11)

for any 𝑤0 ∈ 𝐻𝑘+2
𝜎 .

Proof of Theorem 4.5. Thanks to Proposition 4.4, it suffices to prove that the
conclusion of Theorem 4.5 holds for 𝑢1 piecewise constant. In this case we can
apply Proposition 4.6 to obtain the existence of a sequence {(𝑢𝑛, 𝜁𝑛)}𝑛∈N ⊂
𝐶∞(𝐽𝑇 ; 𝐸 × 𝐸) satisfying (4.10) and (4.11).

Using Proposition 4.4, we can find 𝜁𝑛 ∈ 𝐶∞(𝐽𝑇 ; 𝐸) such that 𝜁𝑛 (0) = 𝜁𝑛 (𝑇) = 0
and

∥𝜁𝑛 − 𝜁𝑛∥𝐿2 (𝐽𝑇 ;𝐻𝑘+3
𝜎 ) → 0 as 𝑛→ ∞, (4.12)

sup
𝑛∈N

∥𝜁𝑛∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) < ∞, (4.13)

∥R(𝑤0, 𝜁𝑛, 𝑢𝑛) − R(𝑤0, 𝜁𝑛, 𝑢𝑛)∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) → 0 as 𝑛→ ∞. (4.14)
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Then (4.11) and (4.12) imply that

| | |𝜁𝑛 | | |𝑇,𝑘 ⩽ | | |𝜁𝑛 − 𝜁𝑛 | | |𝑇,𝑘 + || |𝜁𝑛 | | |𝑇,𝑘

⩽

∫ 𝑇

0
∥𝜁𝑛 (𝑠) − 𝜁𝑛 (𝑠)∥𝑘 d𝑠 + || |𝜁𝑛 | | |𝑇,𝑘 → 0 as 𝑛→ ∞. (4.15)

Note that

R𝑡 (𝑤0, 𝜁𝑛, 𝑢𝑛) = R𝑡 (𝑤0, 0, �̂�𝑛) − 𝜁𝑛 (𝑡) (𝑡 ∈ 𝐽𝑇 ), (4.16)
R𝑇 (𝑤0, 𝜁𝑛, 𝑢𝑛) = R𝑇 (𝑤0, 0, �̂�𝑛), (4.17)

where �̂�𝑛 B 𝑢𝑛 + 𝜕𝑡 𝜁𝑛. From (4.11), (4.14), and (4.17) it follows that

∥R𝑇 (𝑤0, 0, 𝑢1) − R𝑇 (𝑤0, 0, �̂�𝑛)∥𝑘+2 → 0 as 𝑛→ ∞.

Using (4.11), (4.14)–(4.16), we obtain

| | |R(𝑤0, 0, 𝑢1) − R(𝑤0, 0, �̂�𝑛) | | |𝑇,𝑘 ⩽ 𝑇 ∥R(𝑤0, 0, 𝑢1) − R(𝑤0, 𝜁𝑛, 𝑢𝑛)∥𝐶 (𝐽𝑇 ;𝐻𝑘
𝜎 )

+ 𝑇 ∥R(𝑤0, 𝜁𝑛, 𝑢𝑛) − R(𝑤0, 𝜁𝑛, 𝑢𝑛)∥𝐶 (𝐽𝑇 ;𝐻𝑘
𝜎 )

+ || |R(𝑤0, 𝜁𝑛, 𝑢𝑛) − R(𝑤0, 0, �̂�𝑛) | | |𝑇,𝑘
→ 0 as 𝑛→ ∞. (4.18)

From (4.11), (4.13), (4.14), and (4.16) it follows that {R(𝑤0, 0, �̂�𝑛)}𝑛⩾1 is bounded
in 𝐶 (𝐽𝑇 ;𝐻𝑘+2

𝜎 ). Combining this with (4.18) and Theorem 3.2, we get that

∥Ψ( 𝑓 ,R(𝑤0, 0, 𝑢1)) − Ψ( 𝑓 ,R(𝑤0, 0, �̂�𝑛))∥𝐶 (𝐽𝑇 ;𝐻𝑘 ) → 0 as 𝑛→ ∞

uniformly with respect to 𝑓 ∈ 𝐻𝑘+2 with ∥ 𝑓 ∥𝑘+2 ⩽ 𝑅. This ends the proof of
Theorem 4.5. □

4.3 Proof of Proposition 4.6

In this subsection, we obtain Proposition 4.6, which is the missing link in the
proof of Theorem 4.5.

Proof of Proposition 4.6. Step 1. Without loss of generality, we can assume
that 𝑢1 ∈ 𝐸1 is constant. Indeed, the general case can be obtained by succes-
sively applying the result to each interval of constancy, approximating the resulting
controls with smooth ones, and using Proposition 4.4. Furthermore, we will first
assume that the initial data is more regular, that is, 𝑤0 ∈ 𝐻𝑘+4

𝜎 .
By the definition of 𝐸1 = F (𝐸) in (2.8), any 𝑢1 ∈ 𝐸1 can be represented in
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the form

𝑢1 = 𝑢 −
𝑝∑︁
𝑖=1

𝑁 (𝜉𝑖)

for some integer 𝑝 ⩾ 1 and vectors 𝜉1, . . . , 𝜉 𝑝, 𝑢 ∈ 𝐸 . Choosing 𝑚 = 2𝑝 and
setting

𝜁 𝑖 B

√︂
𝑚

2
𝜉𝑖 , 𝜁 𝑖+𝑝 B −

√︂
𝑚

2
𝜉𝑖 , 𝑖 = 1, . . . , 𝑝,

it is easy to see that

𝑁 (𝑤) − 𝑢1 =
1
𝑚

𝑚∑︁
𝑗=1

𝑁 (𝑤 + 𝜁 𝑗) − 𝑢 (𝑤 ∈ 𝐻𝑘+4
𝜎 ).

Then 𝑤1 B R(𝑤0, 0, 𝑢1) ∈ 𝐶 (𝐽𝑇 ;𝐻𝑘+4
𝜎 ) satisfies the following equation

¤𝑤1 +
1
𝑚

𝑚∑︁
𝑗=1

𝑁 (𝑤1 + 𝜁 𝑗) = ℎ(𝑡) + 𝑢. (4.19)

Let 𝜁 (𝑡) be a 1-periodic function such that 𝜁 (𝑠) = 𝜁 𝑗 for 𝑠 ∈ [( 𝑗 − 1)/𝑚, 𝑗/𝑚)
and 𝑗 = 1, . . . , 𝑚, and let 𝜁𝑛 (𝑡) = 𝜁 (𝑛𝑡/𝑇). The equation (4.19) is equivalent to

¤𝑤1 + 𝑁 (𝑤1 + 𝜁𝑛) = ℎ(𝑡) + 𝑢 + 𝑔𝑛 (𝑡),

where

𝑔𝑛 (𝑡) B 𝑁 (𝑤1 + 𝜁𝑛) −
1
𝑚

𝑚∑︁
𝑗=1

𝑁 (𝑤1 + 𝜁 𝑗).

For any 𝑔 ∈ 𝐿2(𝐽𝑇 ;H), let us set 𝐾𝑔(𝑡) B ∫ 𝑡0 𝑔(𝑠) d𝑠 and note that the difference
𝑣𝑛 B 𝑤1 − 𝐾𝑔𝑛 solves the problem

¤𝑣𝑛 + 𝑁 (𝑣𝑛 + 𝜁𝑛 + 𝐾𝑔𝑛) = ℎ(𝑡) + 𝑢, 𝑣𝑛 (0) = 𝑤0.

Hence 𝑣𝑛 = R(𝑤0, 𝜁𝑛 + 𝐾𝑔𝑛, 𝑢). Next, the definition of 𝜁𝑛 implies that the set
{𝜁𝑛 (𝑡)}𝑡∈𝐽𝑇 is contained in a finite subset of 𝐻𝑘+4

𝜎 not depending on 𝑛; therefore,

sup
𝑛⩾1

∥𝜁𝑛∥𝐿∞ (𝐽𝑇 ;𝐻𝑘+4
𝜎 ) < ∞. (4.20)

In Step 2, we will show that

∥𝐾𝑔𝑛∥𝐶 (𝐽𝑇 ;𝐻𝑘+3
𝜎 ) → 0 as 𝑛→ ∞. (4.21)

This limit implies that sup𝑛∈N ∥𝑣𝑛∥𝐶 (𝐽𝑇 ;𝐻𝑘+3
𝜎 ) < ∞. Hence, by (4.20), (4.21), and
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Proposition 4.4, we have

∥R(𝑤0, 𝜁𝑛, 𝑢) − 𝑣𝑛∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) → 0 as 𝑛→ ∞.

On the other hand, by (4.21) and the fact that 𝑣𝑛 = 𝑤1 − 𝐾𝑔𝑛, one has the
convergence ∥𝑣𝑛 − 𝑤1∥𝐶 (𝐽𝑇 ;𝐻𝑘+3

𝜎 ) → 0 as 𝑛→ ∞. As a result,

∥R(𝑤0, 𝜁𝑛, 𝑢) − 𝑤1∥𝐶 (𝐽𝑇 ;𝐻𝑘+2
𝜎 ) → 0 as 𝑛→ ∞. (4.22)

Step 2. In this step, we prove the limit (4.21). By an approximation argument,
it suffices to consider the case where 𝑤1 : 𝐽𝑇 → 𝐻𝑘+4

𝜎 is piecewise constant.
Let us first note that the family {𝐾𝑔𝑛}𝑛∈N is relatively compact in the space

𝐶 (𝐽𝑇 ;𝐻𝑘+3
𝜎 ). Indeed, as 𝑤1 is piecewise constant, the set {𝑔𝑛 (𝑡)}𝑡∈𝐽𝑇 is contained

in a finite subset of 𝐻𝑘+3
𝜎 not depending on 𝑛. Therefore, there is a compact set

𝐺 ⊂ 𝐻𝑘+3
𝜎 such that 𝐾𝑔𝑛 (𝑡) ∈ 𝐺 for any 𝑡 ∈ 𝐽𝑇 and 𝑛 ⩾ 1. As

sup
𝑛⩾1

∥𝑔𝑛∥𝐶 (𝐽𝑇 ;𝐻𝑘+3
𝜎 ) < ∞,

the family {𝐾𝑔𝑛}𝑛∈N is uniformly equicontinuous on 𝐽𝑇 . The Arzelà–Ascoli
theorem implies that {𝐾𝑔𝑛}𝑛∈N is relatively compact in 𝐶 (𝐽𝑇 ;𝐻𝑘+3

𝜎 ). Thus, the
limit (4.21) will be established if we show that

∥𝐾𝑔𝑛 (𝑡)∥𝐻𝑘+3
𝜎

→ 0 as 𝑛→ ∞ for any 𝑡 ∈ 𝐽𝑇 . (4.23)

We first prove this convergence in the case when 𝑤1 is constant: 𝑤1(𝑡) = 𝑏 ∈ 𝐻𝑘+4
𝜎 ,

𝑡 ∈ 𝐽𝑇 . Let 𝑡 = 𝑡𝑙 + 𝜏, where 𝑡𝑙 = 𝑙𝑇/𝑛, 𝑙 ∈ N, and 𝜏 ∈ [0, 𝑇/𝑛). From the definition
of 𝑔𝑛 and 𝜁𝑛, we have∫ 𝑙𝑇

𝑛

0
𝑔𝑛 (𝑠) d𝑠 =

∫ 𝑙𝑇
𝑛

0
𝑁 (𝑏 + 𝜁𝑛 (𝑠)) d𝑠 − 𝑙𝑇

𝑚𝑛

𝑚∑︁
𝑗=1

𝑁 (𝑏 + 𝜁 𝑗) = 0,

hence

𝐾𝑔𝑛 (𝑡) =
∫ 𝜏

0
𝑁 (𝑏 + 𝜁𝑛 (𝑠)) d𝑠 − 𝜏

𝑚

𝑚∑︁
𝑗=1

𝑁 (𝑏 + 𝜁 𝑗).

Since 𝜏 → 0 as 𝑛 → ∞, we get (4.23). In the same way, we can show (4.23) for
any piecewise constant 𝑤1.

Step 3. Let us show that

| | |𝜁𝑛 | | |𝑇,𝑘+4 → 0 as 𝑛→ ∞. (4.24)

The argument is similar to the one in the previous step. It is enough to check that

(i) {𝐾𝜁𝑛}𝑛∈N is relatively compact in 𝐶 (𝐽𝑇 ;𝐻𝑘+4
𝜎 );
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(ii) ∥𝐾𝜁𝑛 (𝑡)∥𝐻𝑘+4
𝜎

→ 0 as 𝑛→ ∞ for any 𝑡 ∈ 𝐽𝑇 .

To prove (i), we use the Arzelà–Ascoli theorem. The set {𝜁𝑛 (𝑡)}𝑡∈𝐽𝑇 is contained
in a finite subset of 𝐻𝑘+4

𝜎 not depending on 𝑛. This implies that there is a compact
set 𝐹 ⊂ 𝐻𝑘+4

𝜎 such that 𝐾𝜁𝑛 (𝑡) ∈ 𝐹 for any 𝑡 ∈ 𝐽𝑇 and 𝑛 ⩾ 1. From (4.20) it
follows that the sequence {𝐾𝜁𝑛}𝑛∈N is uniformly equicontinuous on 𝐽𝑇 . Thus, by
the Arzelà–Ascoli theorem, {𝐾𝜁𝑛}𝑛∈N is relatively compact in 𝐶 (𝐽𝑇 ;𝐻𝑘+4

𝜎 ).
To prove (ii), we fix 𝑡 = 𝑡𝑙 +𝜏, where 𝑡𝑙 = 𝑙𝑇/𝑛, 𝑙 ∈ N, and 𝜏 ∈ [0, 𝑇/𝑛). In view

of the construction of 𝜁𝑛, we have that 𝐾𝜁𝑛 (𝑙𝑇/𝑛) = 0. Combining this with (4.20)
and the fact that 𝜏 → 0 as 𝑛→ ∞, we get (ii). This completes the proof of (4.24).

Note that 𝜁𝑛 is 𝐸-valued. Taking an arbitrary sequence {𝜁𝑛}𝑛∈N ⊂ 𝐶∞(𝐽𝑇 ; 𝐸)
such that

∥𝜁𝑛 − 𝜁𝑛∥𝐿∞ (𝐽𝑇 ;𝐻𝑘+4
𝜎 ) → 0 as 𝑛→ ∞,

we infer from (4.22) that the conclusions of Proposition 4.6 hold for {(𝑢, 𝜁𝑛)}𝑛∈N ⊂
𝐶∞(𝐽𝑇 ; 𝐸 × 𝐸) in the case 𝑤0 ∈ 𝐻𝑘+4

𝜎 . Finally, an approximation argument, the
inequality (4.20), and Proposition 4.4 imply that the conclusions of Proposition 4.6
still hold in the case 𝑤0 ∈ 𝐻𝑘+2

𝜎 . □

5 Exact controllability

Let 𝑇 > 0 and fix a nonempty open set ω ⊂ T2 such that T2 \ ω is simply-
connected. We consider the motion of a fluid with velocity 𝑣 : [0, 𝑇] ×T2 → R2 and
pressure 𝑝 : [0, 𝑇] × T2 → R, satisfying the forced incompressible Euler system

𝜕𝑡𝑣 + (𝑣 · ∇)𝑣 + ∇𝑝 = ℎ + Iω𝑢, div 𝑣 = 0, 𝑣(0, ·) = 𝑣0, (5.1)

where ℎ denotes a known body force and 𝑢 is an interior control physically localized
in ω.

The global exact boundary controllability of the two-dimensional incompressible
Euler system has been shown for smoothly bounded domains by Coron [8] using
his return method (see also Glass [18] for the three-dimensional case). Therefore,
the global exact controllability of (5.1) is in principle known, but not explicitly
documented in the literature for periodic boundary conditions and with given body
force ℎ. For the convenience of the reader, and still by using classical ideas from
[8], we give here a short proof under the simplifying assumption that T2 \ ω is
simply-connected. When ω ⊂ T2 is arbitrary, our short proof will not work, but the
original argument from [8] could be directly adapted for the case ℎ = 0. See also
[15] by Fernández-Cara et al. for related arguments for the inviscid Boussinesq
system, the work [31] by Rissel on global exact interior controllability of ideal
MHD in bounded 2D domains, and [9] by Fursikov and Coron for the global exact
controllability to trajectories of the 2D incompressible Navier–Stokes system on
manifolds without boundary.
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The following local null controllability result will be proved in Section 5.2 by
using Coron’s return method. The global exact controllability of (5.1) will then
follow as a corollary. Throughout, for 𝑠 > 0 we denote

𝑉𝑠 ≔ 𝐶 ( [0, 𝑠];𝐻1(T2;R2)) ∩ 𝐿∞( [0, 𝑠];𝐻3(T2;R2)). (5.2)

Theorem 5.1. There exists 𝛿0 ∈ (0, 1) such that, given any divergence-free initial
state 𝑣0 ∈ 𝐻3(T2;R2) and force ℎ ∈ 𝐿2( [0, 1];𝐻5(T2;R2)) meeting the smallness
constraint

∥𝑣0∥3 + ∥ℎ∥𝐿2 ( [0,1];𝐻5 (T2;R2 ) ) < 𝛿0, (5.3)

there is a control 𝑢 ∈ 𝐿2( [0, 1];𝐻2(T2;R2)) for which the respective solution
𝑣 ∈ 𝑉1 to the incompressible Euler system (5.1) with 𝑇 = 1 satisfies 𝑣(1, ·) = 0.

In view of known hydrodynamic scaling properties of the incompressible Euler
system, the global exact controllability of (5.1) is now a direct consequence of
Theorem 5.1.

Theorem 5.2. The system (5.1) is globally exactly controllable. That is, given
any time 𝑇 > 0, divergence-free states 𝑣0, 𝑣𝑇 ∈ 𝐻3(T2;R2), and a force ℎ ∈
𝐿2( [0, 𝑇];𝐻5(T2;R2)), there is a control 𝑢 ∈ 𝐿2( [0, 𝑇];𝐻2(T2;R2)) for which
the solution 𝑣 ∈ 𝑉𝑇 to (5.1) obeys 𝑣(𝑇, ·) = 𝑣𝑇 .

Proof. Since the incompressible Euler system on the 2D flat torus is well-posed
(see Section 4), we can denote by (𝓋,𝓅) the unique solution to

𝜕𝑡𝓋 + (𝓋 · ∇)𝓋 + ∇𝓅 = ℎ, div𝓋 = 0, 𝓋(0, ·) = 𝑣0. (5.4)

Now, fix any number 0 < 𝜀 < 𝑇/3 so small that

sup
𝑡∈[0,𝑇 ]

𝜀∥𝓋(𝑡)∥3 + 𝜀∥𝑣𝑇 ∥3 + 𝜀3/2∥ℎ∥𝐿2 ( [0,𝑇 ];𝐻5 (T2;R2 ) ) < 𝛿0,

where 𝛿0 > 0 is a small number fixed in Theorem 5.1. By applying Theorem 5.1
twice, using as initial data and external forces the respective pairs(

𝜀𝓋(𝑇 − 2𝜀), 𝑡 ↦→ (𝜀2ℎ(𝑇 − 2𝜀 + 𝜀𝑡)
)
,

(
𝜀𝑣𝑇 , 𝑡 ↦→ 𝜀2ℎ(𝑇 − 𝜀𝑡)

)
,

there are corresponding controls �̃� and �̂� for which the associated solutions �̃� and �̂�
to (5.1) satisfy �̃�(1, ·) = �̂�(1, ·) = 0 in T2. Finally, we obtain the desired control 𝑢
and solution 𝑣 by means of

(𝑣, 𝑢) (𝑡) ≔


(𝓋, 0) (𝑡) if 𝑡 ∈ [0, 𝑇 − 2𝜀],
(𝜀−1̃𝑣, 𝜀−2�̃�) (𝜀−1(𝑡 − 𝑇 + 2𝜀)) if 𝑡 ∈ [𝑇 − 2𝜀, 𝑇 − 𝜀],
(𝜀−1̂𝑣, 𝜀−2�̂�) (𝜀−1(𝑇 − 𝑡)) if 𝑡 ∈ [𝑇 − 𝜀, 𝑇] .
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□

Let us remark that the regularity stated for controlled solutions in Theorems 5.2
and 5.1 could be immediately improved by using the equation (5.1).

5.1 Auxiliaries

Let 𝑇 > 0 and 𝑣 ∈ 𝐶 ( [0, 𝑇] × T2;R2) be Lipschitz continuous in the space
variables with time-independent Lipschitz constant. We denote by Φ𝑣 : T2 ×
[0, 𝑇]2 → T2 the flow of 𝑣, assigning to each (𝑥, 𝑠, 𝑡) ∈ T2 × [0, 𝑇]2 the solution
Φ𝑣 (𝑥; 𝑠, ·) to

d
d𝑡
Φ𝑣 (𝑥; 𝑠, 𝑡) = 𝑣(𝑡,Φ𝑣 (𝑥; 𝑠, 𝑡)), Φ𝑣 (𝑥; 𝑠, 𝑠) = 𝑥 (5.5)

with initial condition 𝑥 imposed at the time 𝑠.
The following lemma, which is essentially [29, Theorem 3.2], provides a smooth

and constant-in-space vector field inducing a flow that flushes information through
the control region. This vector field will serve as a reference trajectory in the sense
of the return method. See also Fursikov and Imanuvilov [16, Lemma 5.1] regarding
return method trajectories on 2D and 3D flat tori that work for general control
regions but are not constant with respect to the space variables.

Lemma 5.3. Let 𝑇 > 0 and ω̃ ⊂ T2 with nonempty interior. There exists a function
𝑦 ∈ 𝐶∞

0 ((0, 𝑇);R2) such that the flow Φ𝑦 obtained by solving (5.5) with 𝑣 = 𝑦

satisfies Φ𝑦 (𝑥; 0, 𝑇) = 𝑥 for all 𝑥 ∈ T2 and

∀𝑥 ∈ T2, ∃𝑡𝑥 ∈ (0, 𝑇) : Φ𝑦 (𝑥; 0, 𝑡𝑥) ∈ ω̃. (5.6)

Proof. We fix an open ball 𝑂 ⊂ ω̃ with center 𝑥0 and cover T2 by a finite number
𝑀 ∈ N of translations {𝑂𝑖}𝑖∈{1,...,𝑀 } of 𝑂. For each 𝑖 ∈ {1, . . . , 𝑀}, we denote
the center of 𝑂𝑖 by 𝑥𝑖 and make any choice of functions 𝜒𝑖 ∈ 𝐶∞

0 ((0, 𝑇/𝑀);R2)
such that ∫ 𝑇

2𝑀

0
𝜒𝑖 (𝑠) d𝑠 = 𝑥0 − 𝑥𝑖 ,

∫ 𝑇
𝑀

𝑇
2𝑀

𝜒𝑖 (𝑠) d𝑠 = 𝑥𝑖 − 𝑥0

for 𝑖 ∈ {1, . . . , 𝑀}. Then, for 𝑡 ∈ [(𝑖 − 1)𝑇/𝑀, 𝑖𝑇/𝑀), with 𝑖 ∈ {1, . . . , 𝑀}, we
define

𝑦(𝑡) ≔ 𝜒𝑖 (𝑡 − (𝑖 − 1)𝑇/𝑀).

To verify (5.6), let 𝑥 ∈ T2 and 𝑖 ∈ {1, . . . , 𝑀} such that 𝑥 ∈ 𝑂𝑖. Then, for the
choice 𝑡𝑥 ≔ 𝑇 (2𝑖 − 1)/2𝑀 , integrating (5.5) yields

Φ𝑦 (𝑥; 0, 𝑡𝑥) = 𝑥 +
∫ 𝑇 (2𝑖−1)/2𝑀

(𝑖−1)𝑇/𝑀
𝜒𝑖 (𝑠 − (𝑖 − 1)𝑇/𝑀) d𝑠 = 𝑥0 + 𝑥 − 𝑥𝑖 ∈ ω̃.
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□

The next lemma is concerned with solving the problem ∇ ∧ 𝐹 = 𝑓 under
conditions on the support of 𝑓 and 𝐹. The proof follows along the lines of Coron
et al. [10, Appendix A.2].

Lemma 5.4. Let 𝑆 = (𝑆1, 𝑆2)2 ⊂ T2, 𝑘 ∈ N, and 𝑓 ∈ 𝐻𝑘 (T2) a zero average
function with supp( 𝑓 ) ⊂ 𝑆. There exists 𝐹 ∈ 𝐻𝑘 (T2;R2) such that ∇ ∧ 𝐹 = 𝑓 in
T2 and supp(𝐹) ⊂ 𝑆.

Proof. As the case 𝑆 = T2 is trivial, we can assume that supp( 𝑓 ) ⊂ (𝐿1, 𝐿2)2 for
0 < 𝑆1 < 𝐿1 < 𝐿2 < 𝑆2 < 2𝜋. Further, let 𝜒 ∈ 𝐶∞(T) with supp(𝜒) ⊂ (𝑆1, 𝑆2)
and 𝜒 = 1 on a neighborhood of [𝐿1, 𝐿2], and we fix 𝜎 ∈ 𝐶∞( [0, 2𝜋)) such
that 𝜎(𝑠) = 0 if 𝑠 ∈ [0, 𝐿1] and 𝜎(𝑠) = 1 if 𝑠 ∈ [𝐿2, 2𝜋). Even though 𝜎 has
jumps when periodically extended to T, the product 𝜒𝜎′ can be viewed as a
smooth function supported near [𝐿1, 𝐿2] modulo 2𝜋. Finally, the desired function
𝐹 = [𝐹1, 𝐹2]⊤ ∈ 𝐻𝑘 (T2;R2) is obtained by defining its components for each
𝑥 ∈ T2 by means of

𝐹1(𝑥1, 𝑥2) ≔ −𝜒(𝑥1)𝜎′(𝑥1)
∫ 𝑥2

𝐿1

∫ 𝐿2

𝐿1

𝑓 (𝑥1, 𝑠) d𝑥1 d𝑠,

𝐹2(𝑥1, 𝑥2) ≔ 𝜒(𝑥1)
[
−𝜎(𝑥1)

∫ 𝐿2

𝐿1

𝑓 (𝑥1, 𝑥2) d𝑥1 +
∫ 𝑥1

0
𝑓 (𝑠, 𝑥2) d𝑠

]
.

(5.7)

□

5.2 Local exact controllability: proof of Theorem 5.1

We fix a return method trajectory 𝑦 ∈ 𝐶∞
0 ((0, 1);R2) by applying Lemma 5.3

for an open square ω̃ ⊂ ω and 𝑇 = 1. Then, we fix a suitable 𝑀 ∈ N and denote by
𝑂1, . . . , 𝑂𝑀 ⊂ T2 an open covering of T2 such that for each 𝑖 ∈ {1, . . . , 𝑀} there
are 0 < 𝑡𝑎

𝑖
< 𝑡𝑏

𝑖
< 1 with

Φ𝑦 (𝑂𝑖; 0, [𝑡𝑎𝑖 , 𝑡𝑏𝑖 ]) ⊂ ω̃, (5.8)

where we denote Φ𝑦 (𝐴; 0, 𝐽) ≔
{
Φ𝑦 (𝑥; 0, 𝑡)

�� 𝑥 ∈ 𝐴, 𝑡 ∈ 𝐽
}

for 𝐴 ⊂ T2 and
𝐽 ⊂ [0, 1]. Further, we introduce a partition of unity {𝜇𝑖}𝑖∈{1,...,𝑀 } ⊂ 𝐶∞(T2)
subordinate to {𝑂𝑖}𝑖∈{1,...,𝑀 } . That is,

supp(𝜇𝑖) ⊂ 𝑂𝑖 ,

𝑀∑︁
𝑖=1

𝜇𝑖 = 1

for 𝑖 ∈ {1, . . . , 𝑀}.
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The desired controlled solution to (5.1) with 𝑇 = 1 will be obtained as the
fixed point of a certain map ℱ defined on

𝑋𝛿 ≔

{
𝑣 ∈ 𝑉1

����� sup
𝑡∈[0,1]

∥𝑣(𝑡, ·) − 𝑦(𝑡)∥3 ⩽ 𝛿, div 𝑣 = 0

}
,

where 𝑉1 is defined in (5.2) and 𝛿 > 0 is chosen so small that

Φ�̃� (𝑂𝑖; 0, [𝑡𝑎𝑖 , 𝑡𝑏𝑖 ]) ⊂ ω̃ (5.9)

for each �̃� ∈ 𝑋𝛿 and 𝑖 ∈ {1, . . . , 𝑀}.
Remark 5.5. It is possible to choose 𝛿 > 0 such that (5.9) holds for all �̃� ∈ 𝑋𝛿 .
Indeed, for 𝑥 ∈ T2 and (𝑠, 𝑡) ∈ [0, 1]2, one has

sup
𝑥∈T2, (𝑠,𝑡 ) ∈ [0,1]2

| (Φ𝑦 −Φ�̃�) (𝑥; 𝑠, 𝑡) | ⩽
∫ 𝑡

𝑠

|𝑦(𝑟) − �̃�(𝑟,Φ�̃� (𝑥; 𝑠, 𝑟)) | d𝑟 ⩽ 𝛿.

Therefore, due to (5.8), one obtains (5.9) whenever the number 𝛿 in the definition
of 𝑋𝛿 is sufficiently small.

5.2.1 The fixed point map ℱ

Let �̃� ∈ 𝑋𝛿 be arbitrary. In what follows, we define based on �̃� a new element
𝑣 ∈ 𝑋𝛿 , and then assign ℱ (̃𝑣) ≔ 𝑣.

First, we denote by {𝑤𝑖}𝑖∈{1,...,𝑀 } the family of solutions to the respective
linear transport problems

𝜕𝑡𝑤𝑖 + (̃𝑣 · ∇)𝑤𝑖 = 0, 𝑤𝑖 (0, ·) = ∇ ∧ (𝜇𝑖𝑣0), (5.10)

where for each 𝑖 ∈ {1, . . . , 𝑀} the initial state of 𝑤𝑖 is localized in 𝑂𝑖. Moreover,
by the method of characteristics, it holds

𝑤𝑖 (𝑡, 𝑥) = (∇ ∧ (𝜇𝑖𝑣0)) (Φ�̃� (𝑥; 𝑡, 0)) (5.11)

for 𝑖 ∈ {1, . . . , 𝑀}. This implies the regularity

𝑤1, . . . , 𝑤𝑀 ∈ 𝐶 ( [0, 1]; 𝐿2(T2)) ∩ 𝐿∞( [0, 1];𝐻2(T2)).

Below, in (5.16), we will employ the auxiliary functions {𝑤𝑖}𝑖∈{1,...,𝑀 } as
building blocks for a vorticity control.To that end, we note that for any 𝑖 ∈
{1, . . . , 𝑀} and 𝑡 ∈ [0, 1], one has∫

T2
𝑤𝑖 (𝑡, 𝑥) d𝑥 = 0. (5.12)
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Indeed, due to
∫
T2 ∇ ∧ (𝜇𝑖𝑣0) (𝑥) d𝑥 = 0, this follows by integrating the equation

(5.10) over T2 and applying integration by parts.
To account also for the prescribed body force ℎ when defining the vorticity

control in (5.16) below, we introduce another auxiliary function 𝑤ℎ as the solution
to the transport problem

𝜕𝑡𝑤ℎ + (̃𝑣 · ∇)𝑤ℎ = ∇ ∧ ℎ + 𝜉ℎ, 𝑤ℎ (0, ·) = 0, (5.13)

where

𝜉ℎ (𝑡, 𝑥) ≔ −
𝑀∑︁
𝑖=1

I[𝑡𝑎
𝑖
,𝑡𝑏
𝑖
] (𝑡)

𝑡𝑏
𝑖
− 𝑡𝑎

𝑖

𝜇𝑖 (Φ�̃� (𝑥; 𝑡, 1)) (∇ ∧ ℎ)
(
𝑧𝑖 (𝑡),Φ�̃� (𝑥; 𝑡, 𝑧𝑖 (𝑡))

)
,

with 𝑧𝑖 (𝑡) ≔ (𝑡 − 𝑡𝑎
𝑖
)/(𝑡𝑏

𝑖
− 𝑡𝑎

𝑖
) for 𝑖 ∈ {1, . . . , 𝑀} and (𝑡, 𝑥) ∈ [0, 1] × T2. In

particular, this implies that supp(𝜉ℎ) ⊂ [0, 1] × ω̃. Using the change of variables
𝑧 = (𝑠 − 𝑡𝑎

𝑖
) (𝑡𝑏

𝑖
− 𝑡𝑎

𝑖
)−1 under the integral sign, one can verify that∫ 1

0
𝜉ℎ (𝑠,Φ�̃� (𝑥; 1, 𝑠)) d𝑠 = −

∫ 1

0
(∇ ∧ ℎ) (𝑠,Φ�̃� (𝑥; 1, 𝑠)) d𝑠.

This implies in view of Duhamel’s principle that 𝑤ℎ (1, ·) = 0. In order to re-
place 𝑤ℎ by an average-free version, we take �̃� ∈ 𝐶∞(T2) with supp( �̃�) ⊂ ω̃ and
∫T2 �̃�(𝑥) d𝑥 = 1. Then, we define the functions

𝑤ℎ (𝑡, 𝑥) ≔ 𝑤ℎ (𝑡, 𝑥) − �̃�(𝑥)
∫
T2
𝑤ℎ (𝑡, 𝑧) d𝑧,

𝜉ℎ (𝑡, 𝑥) ≔ 𝜉ℎ (𝑡, 𝑥) − �̃�(𝑥)
∫
T2
𝜕𝑡𝑤ℎ (𝑡, 𝑧) d𝑧 − [(̃𝑣 · ∇) �̃�] (𝑥)

∫
T2
𝑤ℎ (𝑡, 𝑧) d𝑧,

which satisfy

𝜕𝑡𝑤ℎ + (̃𝑣 · ∇)𝑤ℎ = ∇ ∧ ℎ + 𝜉ℎ, 𝑤ℎ (0, ·) = 0, 𝑤ℎ (1, ·) = 0 (5.14)

and ∫
T2
𝑤ℎ (𝑡, 𝑥) d𝑥 = 0 (5.15)

for all 𝑡 ∈ [0, 1].
Next, following the idea of [10, Appendix A.2], we introduce a controlled

solution to a linear version of the vorticity formulation of (5.1) by setting

𝑤(𝑡, 𝑥) ≔
𝑀∑︁
𝑖=1

𝛽𝑖 (𝑡)𝑤𝑖 (𝑡, 𝑥) + 𝑤ℎ (𝑡, 𝑥), 𝜉 (𝑡, 𝑥) ≔
𝑀∑︁
𝑖=1

𝛽′𝑖 (𝑡)𝑤𝑖 (𝑡, 𝑥) + 𝜉ℎ (𝑡, 𝑥)

(5.16)
for all (𝑡, 𝑥) ∈ [0, 1] × T2, and where {𝛽𝑖}𝑖∈{1,...,𝑀 } ⊂ 𝐶∞( [0, 1]; [0, 1]) are fixed
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independently of the choice of �̃� such that

𝛽𝑖 (𝑡) =
{

1 if 0 ⩽ 𝑡 ⩽ 𝑡𝑎
𝑖
,

0 if 𝑡 ⩾ 𝑡𝑏
𝑖

(5.17)

for each 𝑖 ∈ {1, . . . , 𝑀}.
Lemma 5.6. The functions 𝑤 and 𝜉 defined via (5.16) solve the controllability
problem

𝜕𝑡𝑤 + (̃𝑣 · ∇)𝑤 = ∇ ∧ ℎ + 𝜉, 𝑤(0, ·) = ∇ ∧ 𝑣0, 𝑤(1, ·) = 0. (5.18)

Moreover, 𝑤 belongs to 𝐶 ( [0, 1]; 𝐿2(T2)) ∩ 𝐿∞( [0, 1];𝐻2(T2)) and has zero
average, while the control satisfies supp(𝜉) ⊂ [0, 1] × ω̃.

Proof. That 𝑤 solves the initial value problem in (5.18) with control 𝜉 can be seen
by plugging (5.16) into (5.18). The regularity of 𝑤 is inherited from that of the
solutions to the involved transport problems (5.10) and (5.13). It follows then from
the properties of {𝛽𝑖}𝑖∈{1,...,𝑀 } and the definition of 𝑤ℎ that 𝑤(1, ·) = 0. Moreover,
by (5.12) and (5.15), the function 𝑤 has zero average. Finally, the support of 𝜉 is
characterized by using Lemma 5.3 and (5.8), (5.9), and (5.17). Indeed, given any
𝑡 ∈ [0, 1] with 𝛽′

𝑖
(𝑡) ≠ 0 for an index 𝑖 ∈ {1, . . . , 𝑀}, one finds that supp(𝑤𝑖 (𝑡, ·)),

which is transported by the flow of �̃� in the sense of (5.11), is contained in ω̃. □

To complete the construction of ℱ, the function 𝑣(𝑡, ·) is obtained for each
𝑡 ∈ [0, 1] by solving in T2 the div-curl problem

div(𝑣(𝑡, ·)) = 0, ∇ ∧ 𝑣(𝑡, ·) = 𝑤(𝑡, ·),
∫
T2
𝑣(𝑡, 𝑥) d𝑥 = 𝑦(𝑡) + 𝜅(𝑡)

∫
T2
𝑣0(𝑥) d𝑥,

where 𝜅 ∈ 𝐶∞( [0, 1]; [0, 1]) is fixed such that 𝜅(0) = 1 and 𝜅(1) = 0.
Remark 5.7. One can construct 𝑣 using the stream function approach. To this end,
one first solves in T2 the Poisson problems Δ𝜓(𝑡, ·) = −𝑤(𝑡, ·) with 𝑡 ∈ [0, 1] and
subsequently takes 𝑣 ≔ ∇⊥𝜓 + 𝐴 with 𝐴 ≔ 𝑦 + 𝜅 ∫T2 𝑣0(𝑥) d𝑥.

Finally, we define ℱ (̃𝑣) ≔ 𝑣. In view of Remark 5.7 and classical elliptic
regularity results for the Laplacian, one can infer that ℱ (̃𝑣) ∈ 𝑉1.

Proposition 5.8. If the data bound 𝛿0 > 0 in (5.3) is chosen sufficiently small, the
map ℱ admits a unique fixed point in 𝑋𝛿 .

Proof. We show that ℱ is a contractive self-map 𝑋𝛿 → 𝑋𝛿 with respect to the
norm of 𝐶 ( [0, 1];𝐻1(T2;R2)) if the bound 𝛿0 > 0 in (5.3) is fixed sufficiently
small. Note that 𝑋𝛿 is a closed subspace of 𝐶 ( [0, 1];𝐻1(T2;R2)) and hence a
complete metric space with respect to the norm of 𝐶 ( [0, 1];𝐻1(T2;R2)). Thus,
the conclusion follows from Banach’s fixed point theorem. Below, 𝐶 > 0 denotes a
generic constant which can be different from line to line.
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Self-map property. Let �̃� ∈ 𝑋𝛿 be arbitrary and define 𝑣 ≔ ℱ (̃𝑣). Due to the
definition of 𝑋𝛿 , the 𝐿∞( [0, 1];𝐻3(T2;R2)) norm of �̃� is bounded by a constant
depending only on 𝑦 and on 𝛿. Moreover, the associated function 𝑤ℎ, arising from
(5.13) in the construction of ℱ, admits the representation

𝑤ℎ (𝑡, 𝑥) =
∫ 𝑡

0
(∇ ∧ ℎ + 𝜉ℎ) (Φ�̃� (𝑥; 𝑡, 𝑠), 𝑠) d𝑠

for all (𝑡, 𝑥) ∈ [0, 1] × T2. This implies, with the help of the continuous Sobolev
embedding 𝐻2(T2) ↩→ 𝐿∞(T2), the rough estimate

∥𝑤ℎ (𝑡, ·)∥2 ⩽ 𝐶∥ℎ∥𝐿2 ( [0,1];𝐻5 (T2;R2 ) ) sup
𝑡∈[0,1]

∥̃𝑣(𝑡, ·)∥3 ⩽ 𝐶∥ℎ∥𝐿2 ( [0,1];𝐻5 (T2;R2 ) ) .

Therefore, in view of (5.16) and Remark 5.7, it follows that

sup
𝑡∈[0,1]

∥𝑣(𝑡, ·) − 𝑦(𝑡)∥3 ⩽ 𝐶

(
sup

𝑡∈[0,1]
∥∇ ∧ 𝑣(𝑡, ·)∥2 + ∥𝑣0∥3

)
⩽ 𝐶

(
sup

𝑡∈[0,1]

𝑀∑︁
𝑖=1

∥𝑤𝑖 (𝑡, ·)∥2 + ∥𝑣0∥3 + ∥ℎ∥𝐿2 ( [0,1];𝐻5 (T2;R2 ) )

)
.

The basic estimates for (5.10) yield ∥𝑤𝑖 (𝑡, ·)∥2 ⩽ 𝐶∥𝑣0∥3. This shows that 𝑣 ∈ 𝑋𝛿

whenever ∥𝑣0∥3 + ∥ℎ∥𝐿2 ( [0,1];𝐻5 (T2;R2 ) ) is sufficiently small. Finally, we fix 𝛿0 > 0
in Theorem 5.1 so that ℱ (̃𝑣) ∈ 𝑋𝛿 for each element �̃� ∈ 𝑋𝛿 .

Contraction property. We fix arbitrary elements �̃�𝑎, �̃�𝑏 ∈ 𝑋𝛿 and follow the
steps of the construction of ℱ from Section 5.2.1 in order to define

𝑣𝑎 ≔ ℱ (̃𝑣𝑎), 𝑣𝑏 ≔ ℱ (̃𝑣𝑏), �̃� ≔ �̃�𝑎 − �̃�𝑏,
𝑣 ≔ 𝑣𝑎 − 𝑣𝑏, 𝑤𝑎 ≔ ∇ ∧ 𝑣𝑎, 𝑤𝑏 ≔ ∇ ∧ 𝑣𝑏, 𝜁 ≔ 𝑤𝑎 − 𝑤𝑏 .

Moreover, for all (𝑡, 𝑥) ∈ [0, 1] × T2 it holds 𝜁 (𝑡, 𝑥) = ∑𝑀
𝑖=1 𝛽𝑖 (𝑡)𝜁𝑖 (𝑡, 𝑥), where

we denote the differences {𝜁𝑖}𝑖∈{1,...,𝑀 } ≔ {𝑤𝑎
𝑖
− 𝑤𝑏

𝑖
}𝑖∈{1,...,𝑀 } for families

{𝑤𝑎
𝑖
}𝑖∈{1,...,𝑀 } and {𝑤𝑏

𝑖
}𝑖∈{1,...,𝑀 } of solutions to problems of the form (5.10) that

are associated with 𝑤𝑎 and 𝑤𝑏, respectively.
In particular, for each 𝑖 ∈ {1, . . . , 𝑀}, the function 𝜁𝑖 solves in [0, 1] × T2 the

problem

𝜕𝑡 𝜁𝑖 + (̃𝑣 · ∇)𝜁𝑖 + (̃𝑣 · ∇)𝑤𝑏
𝑖 + (̃𝑣𝑏 · ∇)𝜁𝑖 = 0, 𝜁𝑖 (0, ·) = 0.

Furthermore, noting that �̃� is average-free, for each 𝑡 ∈ [0, 1] and 𝑖 ∈ {1, . . . , 𝑀},
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one has the estimate

∥𝜁𝑖 (𝑡, ·)∥2
𝐿2 ⩽ 𝐶

(∫ 𝑡

0
∥𝜁𝑖 (𝑠, ·)∥2

𝐿2 d𝑠 + 𝛿0

∫ 𝑡

0
∥̃𝑣(𝑠, ·)∥2

1 d𝑠
)
.

Hence, resorting to Grönwall’s inequality, one can infer that

sup
𝑡∈[0,1]

∥ℱ (̃𝑣𝑎) (𝑡, ·) −ℱ (̃𝑣𝑏) (𝑡, ·)∥2
1 ⩽ 𝐶𝛿0 sup

𝑡∈[0,1]
∥ (̃𝑣𝑎 − �̃�𝑏) (𝑡, ·)∥2

1.

As a result, we can further reduce 𝛿0 to ensure that ℱ forms a contraction in the
space 𝑋𝛿 with respect to the norm of 𝐶 ( [0, 1];𝐻1(T2;R2)). □

5.2.2 Controlled solution

Let𝑉 be the fixed point of ℱ provided by Proposition 5.8. From the construction
of ℱ in Section 5.2.1, it follows that 𝑉 solves in [0, 1] × T2 the vorticity problem

𝜕𝑡𝑊 + (𝑉 · ∇)𝑊 = ∇ ∧ ℎ + 𝜉,

∇ ∧𝑉 = 𝑊, div𝑉 = 0,
∫
T2
𝑉 (𝑥, ·) d𝑥 = 𝑦(·) + 𝜅(·)

∫
T2
𝑣0(𝑥) d𝑥,

𝑊 (0, ·) = ∇ ∧ 𝑣0,

where 𝜉 ∈ 𝐶 ( [0, 1]; 𝐿2(T2)) ∩ 𝐿∞( [0, 𝑇];𝐻2(T2)) is obtained via (5.16). As the
function (𝑡, 𝑥) ↦→ 𝛽′

𝑖
(𝑡)𝑤𝑖 (𝑡, 𝑥) from (5.10) is for each 𝑖 ∈ {1, . . . , 𝑀} supported in

[0, 1] × ω̃, the formula (5.7) in the proof of Lemma 5.4 provides a velocity control

𝑈 ∈ 𝐶 ( [0, 1]; 𝐿2(T2;R2)) ∩ 𝐿∞( [0, 𝑇];𝐻2(T2;R2)),
∇ ∧𝑈 = 𝜉, supp(𝑈) ⊂ [0, 1] × ω̃.

Now, we define the function 𝑐 ∈ 𝐿2( [0, 1];R2) by setting

𝑐(𝑡) ≔
∫
T2
(𝜕𝑡𝑉 (𝑡, 𝑥) + (𝑉 (𝑡, 𝑥) · ∇)𝑉 (𝑡, 𝑥) − ℎ(𝑡, 𝑥) −𝑈 (𝑡, 𝑥)) d𝑥

=

∫
T2
(𝜕𝑡𝑉 (𝑡, 𝑥) − ℎ(𝑡, 𝑥) −𝑈 (𝑡, 𝑥)) d𝑥

for 𝑡 ∈ [0, 1]. Because of the assumption that T2 \ ω is simply-connected, there
exist Λ, Σ ∈ 𝐶∞(T2;R2) satisfying ∇ ∧Λ = ∇ ∧ Σ = 0 in T2 and (for instance, see
Theorem A.1 in [29])

supp(Λ) ∪ supp(Σ) ⊂ ω, spanR
{∫
T2
Λ(𝑥) d𝑥,

∫
T2
Σ(𝑥) d𝑥

}
= R2.
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Thus, one can write 𝑐(𝑡) = 𝑐1(𝑡) ∫T2 Λ(𝑥) d𝑥 + 𝑐2(𝑡) ∫T2 Σ(𝑥) d𝑥 for functions
𝑐1, 𝑐2 ∈ 𝐿2( [0, 1]) and 𝑡 ∈ [0, 1]. As a result, for 𝑢 ≔ 𝑈 + 𝑐1Λ + 𝑐2Σ it follows
that

∇ ∧ (𝜕𝑡𝑉 + (𝑉 · ∇)𝑉 − ℎ − 𝑢) = 0,∫
T2
(𝜕𝑡𝑉 (𝑡, 𝑥) + (𝑉 (𝑡, 𝑥) · ∇)𝑉 (𝑡, 𝑥) − ℎ(𝑡, 𝑥) −𝑈 (𝑡, 𝑥) − 𝑢(𝑡, 𝑥)) d𝑥 = 0.

In view of the Helmholtz decomposition theorem, this implies that 𝑉 satisfies
(5.1) with the control 𝑢. Since 𝜅(0) = 1 and 𝑦(0) = 𝑦(1) = 𝜅(1) = 0, it holds
𝑉 (0, ·) = 𝑣0 and 𝑉 (1, ·) = 0.

6 Proofs of the main results

This section is devoted to the proofs of our main results in Theorem 2.4 and
Theorem 2.5.

Proof of Theorem 2.4. Let �̃� ∈ 𝐶∞(T2;R2) be a relaxation enhancing field, in the
sense of Definition 1.1. We refer to Constantin et al. [7, Section 6] for the existence
of such fields. Moreover, let 𝑎 > 0 be such that the solution 𝜙𝑎 of (1.1) and (1.2),
with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 and

∫
T2 𝑓 (𝑥) d𝑥 = 0, satisfies

∥𝜙𝑎 (𝜏, ·)∥𝐿2 (T2 ) <
𝛿

3
. (6.1)

Let 𝑓 ∈ 𝐻4 be such that ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1,
∫
T2 𝑓 (𝑥) d𝑥 = 0, and

∥ 𝑓 − 𝑓 ∥𝐿2 (T2 ) <
2𝛿
9
. (6.2)

Denoting 𝜙𝑎 the solution of (1.1) and (1.2) with 𝑓 replaced by 𝑓 it follows that

∥𝜙𝑎 (𝜏, ·) − 𝜙𝑎 (𝜏, ·)∥𝐿2 (T2 ) <
2𝛿
9
. (6.3)

Next, for any integer 𝑛 ⩾ 1, let 𝜃𝑛 : 𝐽𝜏 = [0, 𝜏] → [0, 1] be a smooth non-negative
function satisfying 𝜃𝑛 (0) = 0 and 𝜃𝑛 (𝑡) = 1 for 1/𝑛 ⩽ 𝑡 ⩽ 𝜏. Then set

𝜓𝑛 (𝑡, 𝑥) ≔ (1 − 𝜃𝑛 (𝑡))𝑣0(𝑥) + 𝜃𝑛 (𝑡)𝑎�̃�(𝑥).

The function 𝜓𝑛 equals to 𝑣0 at 𝑡 = 0, reaches 𝑎�̃� at 𝑡 = 1/𝑛, and stays there
for the remaining time. Now let �̃�𝜓𝑛

be the solution of (1.8) and (1.9), with the
velocity field 𝜓𝑛 instead of 𝑣 and the initial data 𝑓 instead of 𝑓 . We can then apply
Theorem 4.1 with 𝜓 = 𝜓𝑛 to find a control 𝑢 ∈ 𝐶∞(𝐽𝜏 ;R𝑚) such that the solution
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𝑣 of (4.1) satisfies
∥�̃�𝑣 − �̃�𝜓𝑛

∥𝐶 (𝐽𝜏 ;𝐻2 ) <
𝛿

9
, (6.4)

where �̃�𝑣 is the solution of (1.8) and (1.9), with the initial data 𝑓 instead of
𝑓 . Noting that ∥𝜓𝑛∥𝐶 (𝐽𝜏 ;𝐻4

𝜎 ) ⩽ ∥𝑣0∥4 + 𝑎∥ �̃�∥4, we can apply Theorem 3.2 with
𝑅 = ∥ 𝑓 ∥4 + ∥𝑣0∥4 + 2𝑎∥ �̃�∥4 to obtain

∥�̃�𝜓𝑛
− 𝜙𝑎∥𝐶 (𝐽𝜏 ;𝐻2 ) ⩽ 𝐶 | | |𝜓𝑛 − 𝑎�̃� | | |1/2

𝜏,2 ⩽ 𝐶

(
∥𝑣0 − 𝑎�̃�∥2

𝑛

)1/2

for some constant 𝐶 = 𝐶 (𝑅, 𝜏) > 0. Taking now 𝑛 large enough, it follows that

∥�̃�𝜓𝑛
− 𝜙𝑎∥𝐶 (𝐽𝜏 ;𝐻2 ) <

𝛿

9
. (6.5)

On the other hand, combining (6.2) and the standard energy estimate for (1.8) and
(1.9) (with 𝑓 − 𝑓 instead of 𝑓 ), it follows that

∥𝜑𝑣 (𝜏, ·) − �̃�𝑣 (𝜏, ·)∥𝐿2 (T2 ) <
2𝛿
9
,

where 𝜑𝑣 is the solution of (1.8) and (1.9). The last estimate, together with
(6.3)–(6.5) implies that

∥𝜑𝑣 (𝜏, ·) − 𝜙𝑎 (𝜏, ·)∥𝐿2 (T2 ) <
2𝛿
3
.

Combining the above estimate and (6.1) yields the conclusion (2.9), which ends
the proof. □

The remaining part of this section is devoted to the proof of Theorem 2.5. An
essential ingredient of this proof is an abstract theorem first established in [7]. We
use the following version of that result corresponding to Theorem 3.3 in [35].

Theorem 6.1. Let 𝑋 be a Hilbert space, and let Γ : D(Γ) → 𝑋 be a strictly
positive operator. Moreover, let 𝑆 : D(𝑆) → 𝑋 be skew-symmetric on 𝑋 , with
D(𝑆) = D(Γ 1

2 ) and 𝑆 ∈ L(D(Γ 1
2 ); 𝑋) . Then the following two statements are

equivalent:

(i) For every 𝜏, 𝛿 > 0 there exists 𝑎(𝜏, 𝛿) such that for any 𝑎 > 𝑎(𝜏, 𝛿) and any
𝑔 ∈ 𝑋 with ∥𝑔∥𝑋 = 1, the solution 𝜉𝑎 of

¤𝜉𝑎 = 𝑎𝑆𝜉𝑎 − Γ𝜉𝑎, 𝜉𝑎 (0) = 𝑔 (6.6)

satisfies ∥𝜉𝑎 (𝜏)∥𝑋 < 𝛿.

(ii) The operator 𝑆 does not have eigenvectors lying in D(Γ 1
2 ).
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We prove Theorem 2.5 by applying Theorem 6.1, with an appropriate choice
of space 𝑋 and operators Γ and 𝑆. For this purpose, we introduce the shear flow
�̃� : T2 → R2 defined by

�̃�(𝑥1, 𝑥2) = [𝛼(𝑥2), 0]⊤
(
[𝑥1, 𝑥2]⊤ ∈ T2

)
, (6.7)

where 𝛼 : T → R. Shear flows have been intensively considered in the context
of enhanced dissipation; see, for instance, Bedrossian and Coti Zelati [6] and
the references therein. For our purposes, it suffices here to note that we have the
following result:

Lemma 6.2. Let �̃� be defined by (6.7), and assume that 𝛼 ∈ 𝐻2(T) is such that 𝛼′

has at most a finite number of zeros on T. Moreover, let 𝑋 be the Hilbert space
defined by (2.10). Then for every 𝜏, 𝛿 > 0 there exists 𝑎∗(𝜏, 𝛿) such that for any
𝑎 ⩾ 𝑎∗(𝜏, 𝛿) and 𝑓 ∈ 𝐿2(T2) with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 the solution 𝜙𝑎 of (1.1) and
(1.2) satisfies

∥P𝑋𝜙𝑎 (𝜏, ·)∥𝐿2 (T2 ) < 𝛿,

where P𝑋 is the orthogonal projection from 𝐿2(T2) onto 𝑋 .

Proof. We first note that 𝑋 is a Hilbert space endowed with the 𝐿2(T2) inner
product. Let Γ : D(Γ) → 𝑋 be the operator defined by

D(Γ) = 𝐻2(T2) ∩ 𝑋,

Γ𝑔 = −Δ𝑔 (𝑔 ∈ D(Γ)).

It is easily seen that Γ is a strictly positive operator on 𝑋 . Moreover, it is not
difficult to check that D(Γ 1

2 ) = 𝐻1(T2) ∩ 𝑋 . We next set

𝑆𝑔 = −(�̃� · ∇𝑔)
(
𝑔 ∈ D(𝑆) B D(Γ 1

2 )
)
.

We clearly have that 𝑆 ∈ L
(
D(Γ 1

2 ), 𝑋
)

is a skew-symmetric (unbounded) operator
on 𝑋 . We remark that if we denote 𝜉𝑎 = P𝑋𝜙𝑎, where 𝜙𝑎 is the solution of
(1.1) and (1.2), then 𝜉𝑎 satisfies (6.6), with the operators Γ and 𝑆 defined above
and 𝑔 = P𝑋 𝑓 .

In order to apply Proposition 6.1 with 𝑋, Γ, and 𝑆 defined above, we still have
to check that 𝑆 has no eigenvectors in 𝐻1(T2) ∩ 𝑋 . To this aim, we remark that
𝑆𝑔 = 𝜆𝑔, with 𝜆 ∈ C and 𝑔 ∈ 𝐻1(T2) ∩ 𝑋 , if and only if the equality

−𝛼(𝑥2)
𝜕𝑔

𝜕𝑥1
(𝑥1, 𝑥2) = 𝜆𝑔(𝑥1, 𝑥2) (6.8)

holds in 𝐿2(T2). If the above formula holds for 𝜆 = 0, then 𝜕𝑥1𝑔 = 0 in 𝐿2(T2);
note that we have 𝛼(𝑥2) ≠ 0 for all but finitely many 𝑥2 ∈ T by the assumption on
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𝛼 and Rolle’s theorem. This and the fact that
∫
T
𝑔(𝑥1, 𝑥2) d𝑥1 = 0 for a.e. 𝑥2 ∈ T

imply that 𝑔 = 0.
Suppose now that (6.8) holds with 𝜆 ≠ 0. By the assumption on 𝛼 combined

with Rolle’s theorem, except for a finite possibilities of 𝑎2 ∈ T, we have

𝛼(𝑎2) ≠ 0, 𝛼′(𝑎2) ≠ 0. (6.9)

For such 𝑎2, the continuity of 𝛼 implies that there exists 𝜀 > 0 such that

𝛼(𝑥2) ≠ 0, 𝛼′(𝑥2) ≠ 0 (𝑥2 ∈ (𝑎2 − 𝜀, 𝑎2 + 𝜀)). (6.10)

Using (6.8) and (6.10), we get that for every 𝑥1, 𝑎1 ∈ T and a.e. 𝑥2 ∈ (𝑎2−𝜀, 𝑎2+𝜀)

𝑔(𝑥1, 𝑥2) = exp
(
− 𝜆

𝛼(𝑥2)
(𝑥1 − 𝑎1)

)
𝑔(𝑎1, 𝑥2).

The above formula, combined with (6.10) and the 2𝜋-periodicity of 𝑔 with respect
to 𝑥1, clearly implies that for every 𝑎2 ∈ T satisfying (6.9) we have

𝑔(𝑥1, 𝑥2) = 0 (𝑥1 ∈ T, 𝑥2 ∈ (𝑎2 − 𝜀, 𝑎2 + 𝜀)).

Since (6.9) holds for all but a finite number of 𝑎2 ∈ T, it follows that 𝑔 = 0.
In conclusion, the only function 𝑔 ∈ 𝐻1(T2) ∩ 𝑋 satisfying (6.8) for some

𝜆 ∈ C is 𝑔 = 0, so that 𝑆 has no eigenvectors in D(Γ 1
2 ). Thus, we can apply

Proposition 6.1 to complete the proof. □

We are now in a position to prove our second main result.

Proof of Theorem 2.5. Let �̃� be defined by (6.7), with 𝛼 ∈ 𝐻3(T) having at most
a finite number of critical points. According to Lemma 6.2 for every 𝜏, 𝛿 > 0
there exists 𝑎 > 0 such that for every 𝑓 ∈ 𝐿2(T2), with ∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 the solution
𝜙𝑎 = 𝜙𝑎 [ 𝑓 ] of (1.1) and (1.2) satisfiesP𝑋𝜙𝑎 [ 𝑓 ]

( 𝜏
2
, ·
)

𝐿2 (T2 )
< 𝛿. (6.11)

With 𝑎 and �̃� chosen as above, we know from Theorem 5.2 that there exists

𝑢 ∈ 𝐿2
( [

0,
𝜏

2

]
;𝐻2(T2;R2)

)
such that the corresponding solution 𝑣 of (5.1), with ℎ = 0, satisfies 𝑣

(
𝜏
2 , ·

)
= 𝑎�̃�.

Since the function 𝑎�̃� is a time-independent solution of (5.1) with 𝑢 = ℎ = 0, it
follows that if we extend 𝑢 to a function in 𝐿∞

(
[0,∞) ;𝐻1(T2;R2)

)
by setting

𝑢(𝑡, ·) = 0 for 𝑡 > 𝜏
2 . Then the corresponding solution 𝑣 of (5.1) with ℎ = 0 satisfies

𝑣 (𝑡, ·) = 𝑎�̃� for every 𝑡 ⩾ 𝜏
2 . Noting that with the choice of 𝑓 = 𝜑𝑣

(
𝜏
2 , ·

)
we have
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∥ 𝑓 ∥𝐿2 (T2 ) ⩽ 1 and 𝜑𝑣 (𝜏, ·) = 𝜙𝑎 [ 𝑓 ]
(
𝜏
2 , ·

)
, the conclusion follows from (6.11). □

The proof of Proposition 2.7 can be obtained by a very slight variation of the
above proof. Indeed, the only change consists in remarking that 𝑎�̃�, with 𝑎 and �̃�
satisfying the assumptions in Proposition 2.7, is a stationary solution of (1.4) with
𝑢 = 0 and ℎ chosen as in the statement of Proposition 2.7.
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